期刊文献+

A novel reconfiguration of the solar array to enhance peak power and efficiency under partial shading conditions:experimental validation

原文传递
导出
摘要 Non-homogeneous irradiation patterns and temperature levels immensely affect the performance of solar photovoltaic arrays.Partial shading conditions on solar arrays reduce the peak power and efficiency.This paper provides a new remedy called a novel Ramanujan reconfiguration(NRR)to eliminate this physical shading problem in solar photovoltaic systems.NRR is a static-based reconfigured technique that is built using a three-diode model with the help of the MATLAB®/Simulink®tool.The special feature of the proposed NRR technique is that when shade occurs on the solar modules,it gets realigned in a particular row,column,diagonal,corner,centre and middle peripheral cages.This helps over a wide range of shade dispersion on the solar array.The novel topology is tested against the conventional total cross-tied(TCT)model and recently introduced advanced reconfigured models,namely odd–even topology(OET)and Kendoku topology(KDT).The results are tested under certain shading conditions.The proposed NRR technique increases the peak power by 4.45,2.15 and 2.17 W under the first shading condition regarding TCT,OET and KDT.Its efficiency is improved by 0.51–2.18%under the third shading condition compared with other considered models in this study.In addition,NRR leads to smooth output curves under the second,third and fourth shading conditions,effectively mitigating the local power peaks.The experimental results show the proposed enhanced performance of the novel model against the other models.Graphical Abstract Remedy for physical problem correlated with solar photovoltaics Comparison with traditional and recent solar models Conclusion:NRR has effectively handled the problem related with solar models.It has improved the efficiency up to 31.44%under S4.Also,smooth output curves under S2-S4 shows its effectiveness in mitigating the local power peaks.Greater power gain at 3.94%under S4 is achieved by novel model.Real-time verification proves the supremacy of novel proposed model over other considered models in this work.
机构地区 EED
出处 《Clean Energy》 EI CSCD 2023年第4期824-842,共19页 清洁能源(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部