期刊文献+

Dynamic scheduling of market price-based combined heat–power-constrained renewable microgrid

原文传递
导出
摘要 In this paper,a market price-based combined heat–power dynamic dispatch model for a microgrid is presented.The microgrid comprises cogeneration units and wind and solar power-generation units.A battery and a heat storage tank are incorporated to optimally balance variations in heat-and-power load demands.The proposed model explores the impact of market prices of electricity,heat supply and load variability on the optimal schedule such that profit maximizes and emission,loss and waste heat are minimized.The Weibull probability distribution function is applied to characterize the uncertain renewable power variable in the model and to find the over-and under-scheduling costs.The problem is solved using an improved differential evolution algorithm in which a fuzzy membership module is appended to obtain a solution having the highest attainment for the selected multiple objectives.The results show that the proposed model can handle uncertain heat–power demand and price scenarios to produce feasible and optimal schedules with owner profits,heat utilization and renewable share varying between 10.55–115.97%,72.51–90.39%and 26.82–38.05%,respectively.
出处 《Clean Energy》 EI CSCD 2023年第4期859-872,共14页 清洁能源(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部