期刊文献+

基于深度学习的食用菌分类研究

Classification of Edible Fungi Based on Deep Learning
下载PDF
导出
摘要 在介绍基于传统提取特征的食用菌分类方法基础上,通过利用卷积神经网络对食用菌进行深度分类的过程,阐述了基于深度学习的食用菌分类方法。试验数据证明深度学习方法在食用菌分类任务上取得了较高的准确率,明显优于传统的提取特征图像识别分类方法。 On the basis of introducing the classification method of edible fungi based on traditional feature extraction,the process of deep classification of edible fungi by using convolutional neural network is expounded.The classification method of edible fungi based on deep learning is proved by experimental data to achieve high accuracy in the classification task of edible fungi,which is ob‐viously superior to the traditional feature extraction image recognition and classification method.
作者 官飞 许韬 Guan Fei;Xu Tao(Department of Intelligent Manufacturing,Fujian Forestry Vocational and Technical College,Nanping 353000,Fujian,)
出处 《农业技术与装备》 2023年第9期102-103,106,共3页 Agricultural Technology & Equipment
基金 基于数字图像技术的食用菌分类研究(JAT191253)。
关键词 食用菌分类 图像识别 卷积神经网络 深度学习法 edible fungi categorize image recognition convolutional neural network deep learning method

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部