摘要
广电有线网络结构形态多样,随着用户网络需求日益增长,网络故障问题突出,在定位故障、优化网络结构方面存在不足,导致无法真正解决用户用网的痛点,致使用户体验感不佳。通过采集在网络重要节点设备上数据,结合网络拨测数据、网络重要节点设备的流量以及用户的上网日志等数据,经数据清洗转换、数据加工处理,采用多种机器学习算法构建用户、小区、网格、区域等多层级的网络质量评价模型,为网络故障的定位、网络升级改造、决策分析提供高效、灵活的数据支撑。
Radio and television cable network structure of various forms,with the growing demand for user networks,network failure problems are prominent,there are deficiencies in locating faults,optimizing network structure,resulting in the inability to truly solve the pain points of users with the network,resulting in poor user experience.Through the collection of data on important network nodes and equipment,combined with network dial-up data,traffic of important network nodes and equipment,and user logs,data cleaning and conversion,data processing and processing,a variety of machine learning algorithms to build users,cells,grids,regions and other multi-level network quality evaluation model,to provide efficient and flexible data support for network fault localization,network upgrading and transformation,and decision-making analysis.data support.
作者
刘晓敏
石乐芸
袁媛
LIU Xiaomin;SHI Leyun;YUAN Yuan(Wasu Media Network Co.,Ltd,Hangzhou 310000,China;Wasu(Zhejiang)Technology Co.,Ltd,Hangzhou 310000,China)
出处
《中国有线电视》
2023年第11期5-9,共5页
China Digital Cable TV
关键词
网络质量
评价模型
网格运行
network quality
evaluation models
grid operation