期刊文献+

连续型显变量调节效应建模方法的规范与例解

Normalization of moderation effect modeling for continuous manifest variables with an illustrative case
下载PDF
导出
摘要 为规范连续型显变量的调节效应建模方法。通过1个例解,比较了原始化、仅对自变量和调节变量进行均值中心化、对所有变量进行均值中心化和对所有变量进行标准化4种建模方法的表面差异和实质内涵。总体而言,尽管原始化方法可能存在着某些潜在的误导之处,但在实质上与均值中心化、标准化方法得到了相同的统计结果。不同建模方法下的回归方程显示的是,在调节变量处于不同水平时,自变量对于因变量的影响程度之差异。而这正是调节效应模型的实质内涵。在课堂教学与学术研究中使用调节效应模型时,应该注重建模方法的规范性并作出恰当的统计解读,其中,标准化处理应该得到更多的应用。 To normalize the moderating effect modeling for continuous manifest variables.With an illustrative case,we compared the apparent differences and substantive connotations across four modeling approaches:primitive model,mean-centering for independent variables and moderating variables alone,mean-centering of all variables,and standardization of all variables.Overall,despite certain pitfalls that could be potentially misleading,the primitive approach yielded essentially the same statistical outcomes as with the mean-centering or the standardization approach.Regression equations derived from these different modeling approaches illustrated varied influence of the independent variables on the dependent variables according to different levels of the moderator,and this,exactly represented the substantive connotations of moderating effect modeling.The use of moderating effect models in classroom practices and academic research should command attentions to normalization of modeling approach and proper interpretation of statistical outcome.Among others,the standardization modeling approach warrants widely use in more settings.
作者 杨茗美 Yang Mingmei(Faculty of Social Sciences,University of Macao,Macao 999078,China)
出处 《校园心理》 2023年第5期356-361,共6页 Journal of Campus Life & Mental Health
关键词 模型 统计学 均值中心化 标准化 调节效应 分块输入 效应量 Models,statistical Mean-centering Standardization Moderation effect Block entry Effect size
  • 相关文献

参考文献5

二级参考文献94

  • 1温忠麟,张雷,侯杰泰,刘红云.中介效应检验程序及其应用[J].心理学报,2004,36(5):614-620. 被引量:7659
  • 2温忠麟,侯杰泰,张雷.调节效应与中介效应的比较和应用[J].心理学报,2005,37(2):268-274. 被引量:3146
  • 3温忠麟,张雷,侯杰泰.有中介的调节变量和有调节的中介变量[J].心理学报,2006,38(3):448-452. 被引量:737
  • 4[1]Bollen K A. Structural equations with latent variables. New York: Wiley, 1989
  • 5[4]Aiken L S, West S G. Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage, 1991
  • 6[5]Cohen J, Cohen P. Applied multiple regression / correlational analysis for the behavioral science. Hillsdale, NJ: Erlbaum, 1975
  • 7[6]Bagozzi R P, Baumgartner H, Yi Y. State versus action orientation and the theory of reasoned action: An application to coupon usage. Journal of Consumer Research, 1992, 18: 505~518
  • 8[7]Anderson T W, Rubin H. Statistical inference in factor analysis. In Proceedings of the third Berkeley symposium (Vol. V). Berkeley, CA: University of California Press, 1956. 111~150
  • 9[8]Joreskog K G. Interaction and nonlinear modeling: issue and approaches. In: Schumacker R E, Marcoulides G A ed. Interaction and nonlinear effects in structural equation modeling. Mahwah, NJ: Erlbaum, 1998. 239~250
  • 10[9]Joreskog K G. Simultaneous factor analysis in several populations. Psychometrika, 1971, 36: 409~426

共引文献19111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部