摘要
本文讨论了节能和储能传递过程中动量、热量和质量之间的传递不协同现象,以及由此引起的系统效率、换热量、紧凑性、可靠性、安全性等性能提升困难的瓶颈难题,提出了基于热阻调控的三种典型节能与储能传递过程强化原理及技术.在单侧单相流体传递强化过程中,提出了单侧热阻的定向推流调控方法,实现了热阻与流阻的合理匹配,开发了连续螺旋折流板管壳式换热器、纵向波纹内翅片管和格栅-颗粒复合堆积床技术.在双侧流体传递强化过程中,建立了双侧热阻的局部靶向控制方法,考虑了展向热阻和流向热阻的差异,开发了高温气-气换热器和移动床换热器技术.在相变储能传递强化过程中,揭示了储能过程热阻的时空演变机制,建立了热阻的时空调节方法,开发了超声协同强化相变材料蓄冷技术和多温区相变材料协同热电器件发电技术.
This paper addresses the discordance between momentum,heat,and mass transfer in energy saving and storage.This discordance causes bottleneck problems in system efficiency,heat transfer,compactness,reliability,safety,and other difficulties.Three enhancing principles and technologies for energy storage and saving transfer processes based on thermal resistance regulation are proposed.First,a directional plug flow control method for one-side thermal resistance is proposed to enhance the one-side single-phase fluid transfer.This method achieves a reasonable match between thermal and flow resistance.Heat exchangers with helical baffles,internally finned tubes with longitudinal wavy fins and grille-particle composite-packed beds are developed accordingly.A local target-controlling method for two-side thermal resistance is established to enhance two-side fluid transfer.Finally,considering the difference in thermal resistance in the spanwise and flow directions,technologies for high-temperature gas-gas heat exchangers and moving bed heat exchangers are developed.To enhance the phase-change energy storage,the space-time evolution mechanism of thermal resistance in the energy storage process is revealed,and a space-time regulation method for thermal resistance is established.Ultrasonic-enhanced phase-change material cold storage technology and multitemperature phase-change material cothermoelectric technology are accordingly developed.
作者
王秋旺
WANG QiuWang(Key Laboratory of Thermo-Fluid Science and Engineering,MOE,Xi'an Jiaotong University,Xi'an 710049,China)
出处
《中国科学:技术科学》
EI
CSCD
北大核心
2023年第10期1763-1780,共18页
Scientia Sinica(Technologica)
基金
国家自然科学基金重点项目(批准号:52130609)资助。
关键词
节能与储能
热阻调控
定向推流
局部靶向
时空调节
energy saving and storage
thermal resistance regulation
directional plug flow
local targeting
space-time regulation