期刊文献+

浮冰在规则波和双色波下的运动特性研究

Research on the motion responses of ice floe in regular and bichromatic waves
下载PDF
导出
摘要 为研究浮冰在波浪下的运动特性,以单个聚氯乙烯(PVC)塑料圆板模拟浮冰,进行了一系列波浪试验研究。在规则波试验基础上,同时研究了双色波条件下的浮冰运动特性。结果显示:规则波条件下浮冰运动幅频响应算子首先随无量纲波长的增大而增大,当无量纲波长大于4.0后,运动幅频响应算子随无量纲波长的变化不明显,且趋于一定值;在双色波条件下,对应频率组成成分的浮冰运动幅频响应算子与规则波条件下随波长的变化规律一致。根据部分规则波试验结果提出预测浮冰慢漂速度的经验公式,并用已有的试验和余下的规则波与双色波试验结果进行验证。结果表明,经验公式对规则波和双色波条件下的浮冰慢漂速度的误差在20%以内,预测结果吻合较好。 To study the motion response of ice floe under wave excitation,an experiment was carried out by modelling the ice floe with a plastic polyvinyl chloride(PVC)round plate.On the basis of a series of regular wave tests,the motion response of ice floe under bichromatic wave was studied in the experiment.The results show that,under regular wave conditions,the response amplitude operator(RAO)firstly increases with non-dimensional wavelength.When the non-dimensional wavelength is greater than 4.0,the RAO tends to a certain value.The variation of response amplitude operator(RAO)of bichromatic wave with incident wave length is consistent with regular wave conditions.This research also proposed an empirical formula for predicting the drift velocity of ice floes based on part of test results,which was verified by the other experiment result and remaining regular wave and bichromatic wave test results.The results show that the error between empirical formula and experiment for the drift velocity of ice floes under the conditions of regular waves and bichromatic waves is within 20%,and the predicted results are in good agreement.
作者 黄龙威 杨建民 卢文月 HUANG Longwei;YANG Jianmin;LU Wenyue(State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;SJTU Yazhou Bay Institute of Deepsea SCI-TECH,Sanya 572000,China)
出处 《海洋工程》 CSCD 北大核心 2023年第5期70-80,共11页 The Ocean Engineering
基金 上海市科技创新行动计划资助项目(19DZ1207300)。
关键词 浮冰运动 模型冰 慢漂速度 双色波 纵荡 floe motion model ice drift velocity bichromatic wave surge
  • 相关文献

参考文献4

二级参考文献25

  • 1Bouscasse, B., Colagrossi, A., Marrone, S. and Antuono, M., 2013. Nonlinear water wave interaction with floating bodies in SPH, J. Fluid Struct., 42, 112-129.
  • 2Faltinsen, O., 1993. Sea Loads on Ships and Offshore Structures, Cambridge University Press.
  • 3Grotmaack, R. and Meylan, M. H., 2006. Wave forcing of small floating bodies, J. Waterw. Port Coast. Ocean Eng., ASCE, 132(3): 192-198.
  • 4Hadir, I., Hennig, J., Perir, M. and Xing-Kaeding, Y., 2005. Computation of flow-induced motion of floating bodies, Appl. Math. Model., 29(12): 1196-1210.
  • 5Harms, V. W., 1987. Steady wave-drift of modeled ice floes, .1. Waterw. Port Coast. Ocean Eng., ASCE, 113(6): 606-622.
  • 6Hu, C. and Kashiwagi, M., 2009. Two-dimensional numerical simulation and experiment on strongly nonlinear wave-body interactions, J. Mar, Sci. Tech., 14(2): 200-213.
  • 7Huang, G. and Law, A., 2013. Wave-induced drift of large floating objects in regular waves, J. Waterw. Port Coast. Ocean Eng., ASCE, 139(6): 535-542.
  • 8Huang, G., Law, A. W. K. and Huang, Z., 2011. Wave-induced drift of small floating objects in regular waves, Ocean Eng., 38(4): 712-718.
  • 9Kashiwagi, M., 2000. Non-linear simulations of wave-induced motions of a floating body by means of the mixed Eulerian-Lagrangian method, Proc. Inst. of Mech. Engrs. C: J. Mech. Eng. Sci., 214(6): 841-855.
  • 10Koo, W. and Kim, M. H., 2004. Freely floating-body simulation by a 2D fully nonlinear numerical wave tank, Ocean Eng., 31(16): 2011-2046.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部