期刊文献+

基于KG-KGCN的某型动力装置风险分析方法

Risk analysis method of a certain type of power plant based on KG-KGCN
原文传递
导出
摘要 针对动力装置危险因素众多、风险数据繁杂且利用率不高等问题,以故障模式、影响及危害性分析等数据为基础,提出基于知识图谱和图神经网络的系统风险分析方法及算法,利用事件的知识完成链接预测,推理出引发事件的原因及影响等,以实现其精准的统计分析。本文以某型发动机为对象,对其进行风险分析和推理。结果表明:该方法有效解决了传统方法存在的表单繁琐、分析单一等问题,结果更加准确和全面,可使分析效率提升60%以上;并可及时开展风险推理和预测,实现从事后分析向主动预防的转变,为动力装置的智能运维提供了有力支持。 Targeting the problems of numerous risk factors,complex risk data and low utilization rate of power plant,and based on the data of failure mode,impact and criticality analysis,a method and algorithm of system risk analysis was proposed using knowledge graph and graph neural network,and the knowledge of events were utilized to complete link prediction and deduce the cause and impact of events,so as to achieve accurate statistical analysis.A certain type of engine was taken as the object to carry out risk analysis and reasoning.Results showed that this method effectively solved the problems of the traditional method,such as cumbersome forms and single analysis,the results were more accurate and comprehensive,and the analysis efficiency can be improved by more than 60%;and it can carry out risk reasoning and prediction in time,and realize the transformation from post analysis to active prevention,providing a strong support for the intelligent operation and maintenance of power plants.
作者 陈国兵 曾国庆 王越 王学峰 谢旭阳 杨自春 CHEN Guobing;ZENG Guoqing;WANG Yue;WANG Xuefeng;XIE Xuyang;YANG Zichun(College of Power Engineering,Naval University of Engineering,Wuhan 430033,China)
出处 《航空动力学报》 EI CAS CSCD 北大核心 2023年第10期2516-2526,共11页 Journal of Aerospace Power
基金 国家自然科学基金(51609251)。
关键词 风险分析 知识图谱 知识图卷积网络 动力装置 故障模式、影响及危害性分析(FMECA) risk analysis knowledge graph knowledge graph convolutional network power plant failure mode,effects and criticality analysis(FMECA)
  • 相关文献

参考文献8

二级参考文献66

  • 1刘辉,江千军,桂前进,张祺,王梓豫,王磊,王京景.实体关系抽取技术研究进展综述[J].计算机应用研究,2020,37(S02):1-5. 被引量:25
  • 2胡海渤.试论住宅户内燃气立管的改造措施[J].中国石油和化工标准与质量,2020,0(4):102-103. 被引量:3
  • 3单晓明,宋云峰,黄金泉,仇小杰,鲁峰.基于神经网络和模糊逻辑的航空发动机状态监视[J].航空动力学报,2009,24(10):2356-2361. 被引量:20
  • 4张治,车皓阳,施鹏飞.模式匹配问题的描述框架与算法模型[J].模式识别与人工智能,2006,19(6):715-721. 被引量:7
  • 5Smith J, Egglestone G, Farr P, et al. Technical risk assessment of Australian defence projects[R]. Defence Science and Technology Organisation, ADA430722, 2005-15, 2005.
  • 6Graettinger C P, Garcia Miller S, Siviy J, et al. Using the tehnology readiness levels scale to support technology management in the DOD's ATD/STO environments: a findings and recommendations report conducted for army CECOM[R]. Carnegie Mellon Software Engineering Institute,CMU/SEI-2002 SR 027,2002.
  • 7Ruth B A,German B J, Mavris D N. Adaptive selection of engine technology solution sets from a large combinatorial space[R]. Salt Lake City, UT:the 2001 AIAA/ASME/ SAE Joint Propulsion Conference, AIAA 2001-3208,2001.
  • 8Roth B A, Mavris D N, Macsotai N I, Adaptive selection of aircraft engine technologies in the presence of risk [J]. J. Eng. Gas Turbines Power,Z004,126(1):40 -44.
  • 9Saaty T L. The analytic hierarchy process[M]. New York: McGraw Hill Company, 1980.
  • 10Saaty T L. How to make a decision: the analytic hierarchy process[J]. Intertaces, 1994,24(6): 19-43.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部