摘要
目前关于栓接结合部动力学特性的非线性建模研究忽略了栓接处有效接触区域的影响,所建立的等效模型与结合部实际装配特征存在较明显的偏差.对此,提出一种考虑局域接触特征的栓接结合部动力学建模方法.引入柱状正交非线性虚拟材料模型表征结合面在外载荷作用下表现出的柔性结合特征;通过建立虚拟材料微单元应力应变分析模型,基于最小势能原理和吉村允孝法,理论推导虚拟材料的物理参数计算方程;基于深度神经网络(Deep Neural Network,DNN)建立栓接结合部接触区域的几何参数预测模型,实现栓接结合部不同接触状态与接触特性区域直径的非线性映射,最终建立具有结合部实际装配特征的栓接结合部动力学模型.以自由边界状态下的螺栓组连接钢板试件为实验测试对象,采用上述方法建立有限元仿真模型,将模态仿真与实验测试的结果进行对比,验证了模型的有效性和准确性.与未考虑局域接触特征的虚拟材料建模方法对比表明,该方法建立的模型在均方根误差(Root Mean Square Error,RMSE)综合评价指标上有明显提升.
The current nonlinear models of bolted joints ignore the influence of the effective contact area of bolts and deviate significantly from the actual assembly features of joints.In this regard,a dynamic modeling method of bolted joints considering local contact features is proposed.An orthogonal and nonlinear virtual material model with a cylindrical shape is introduced to express the flexible characteristics of joint interfaces under external load.Through establishing a stress-strain analysis model of micro-virtual material,the equations of calculating physical parameters of virtual materials are derived based on the principle of minimum potential energy and the Takashi Yoshimura method.A geometric parameter prediction model of the contact area of bolted joints is established based on the deep neural network(DNN) so that the nonlinear relationship mapping between the contact state of bolted joints and the diameter of the contact characteristic area is realized.Finally,a dynamic model of bolted joints with actual assembly characteristics is developed.Taking steel plates connected with bolts under a free boundary state as an experimental object,the effectiveness and accuracy of the proposed method are proved by comparing the result from the finite element simulation model established by the abovementioned method and experiments.The model developed by the proposed method shows a significant improvement in the comprehensive evaluation index of root mean square error(RMSE) compared with the virtual material modeling method without considering local contact features.
作者
刘江南
龙汪鹏
吕剑文
靳启航
LIU Jiangnan;LONG Wangpeng;LÜ Jianwen;JIN Qihang(College of Mechanical and Vehicle Engineering,Hunan University,Changsha 410082,China;State Key Laboratory of Advanced Design and Manufacture Technology for Vehicle,Hunan University,Changsha 410082,China)
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023年第10期124-134,共11页
Journal of Hunan University:Natural Sciences
基金
湖南省自然科学基金资助项目(2018JJ2039)。