期刊文献+

基于EMD-NLMS的船舶发动机声信号降噪处理方法 被引量:1

Noise reduction processing method of ship engine acoustic signal based on EMD-NLMS
下载PDF
导出
摘要 针对船舶声信号降噪滤波的问题,提出了一种基于经验模态分解-归一最小均方的算法。该方法进行经验模态分解得出噪声分量,将得到的噪声分量作为输入信号进行自适应滤波,通过自适应滤波算法迭代处理得到降噪后的信号分量,并把信号分量叠加得到最终降噪后的信号。通过对比最小均方算法、归一化最小均方算法、经验模态分解-最小均方算法和经验模态分解-归一最小均方算法对船舶声信号的降噪效果,得出在船舶声信号滤波降噪方面经验模态分解-归一最小均方算法相比于其他三种算法有更好的滤波效果。 Aiming at the problem of noise reduction and filtering of ship acoustic signals,this paper proposes a method based on Empirical Mode Decomposition-Normalized Least Mean Square algorithm.In this method,the noise component is obtained by Empirical Mode Decomposition,and the noise component is used as the input signal for adaptive filtering.The denoised signal component is obtained by iterative processing of the adaptive algorithm,and the final denoised signal is obtained by superposition of the signal components.By comparing the noise reduction effects of Least Mean Square algorithm,the Normalized Least Mean Square algorithm,the Empirical Mode Decomposition-Least Mean Square algorithm and the Empirical Mode Decomposition Normalized Least Mean Square algorithm on ship acoustic signals,it is concluded that the Empirical Mode Decomposition Normalized Least Mean Square algorithm has better filtering effect than the other three methods in terms of ship acoustic signal filtering and noise reduction.
作者 叶昱清 丁军航 叶宁祁 官晟 YE Yuqing;DING Junhang;YE Ningqi;GUAN Sheng(School of Automation,Qingdao University,Qingdao 266071,China;First Institute of Oceanography,Ministry of Natural Resources,Qingdao 266061,China;Shandong Key Laboratory of Industrial Control Technology,Qingdao 266071,China;Key Laboratory of Marine Science and Numerical Modeling,Ministry of Natural Resources,Qingdao 266061,China;Shandong Key Laboratory of Marine Science and Numerical Modeling,Qingdao 266061,China;Laboratory of Regional Oceanography and Numerical Modeling,Pilot National Laboratory of Marine Science and Technology,Qingdao 266237,China)
出处 《电子设计工程》 2023年第21期7-12,共6页 Electronic Design Engineering
基金 2020年山东省自然科学基金重点项目(ZR2020KF034)。
关键词 经验模态分解 自适应滤波 信号降噪 船舶声信号 Empirical Mode Decomposition adaptive filtering signal denoising ship acoustic signal
  • 相关文献

参考文献10

二级参考文献106

共引文献99

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部