摘要
方面级情感分析作为情感分析的一项细粒度任务,具有非常高的研究价值。方面词和对应的情感词之间的联系对于确定情感极性起着至关重要的作用。先前的研究大多仅利用一种注意力机制来关注句子和目标之间的联系,未考虑到词性中包含的情感信息。为解决这一问题,该文提出了一种基于ELMo的混合注意力网络(ELMo-based Hybrid Attention Network,EHAN)。与现有网络不同的是,模型不仅将ELMo与Transformer网络相结合来捕获文本信息的情感特征,还利用词性注意力机制对词性和单词进行交互获得方面与情感词之间的联系。在公开数据集上的实验结果表明,EHAN与基准模型相比在准确率和Macro-F1值上都有显著提升,证明该方法可有效改善方面级情感分析的性能。
As a fine-grained task of sentiment analysis,aspect-level sentiment analysis has very high research value.The interaction between aspect words and corresponding emotional words plays a vital role in determining emotional polarity.In contrast to the existing studies with an attention mechanism to focus on the connection between the sentence and the target,this paper proposes a hybrid attention network(EHAN)based on ELMo.Specifically,the model combines ELMo and Transformer network to capture the emotional characteristics of text information,introducing the an additional mechanism to interact with parts-of-speech and words.The experimental results show that EHAN achieves a significant improvement in accuracy and Macro-F_(1)compared with the benchmark model.
作者
孔丽雅
周治平
KONG Liya;ZHOU Zhiping(School of Internet of Things Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处
《中文信息学报》
CSCD
北大核心
2023年第6期147-156,共10页
Journal of Chinese Information Processing
关键词
方面级情感分析
文本表示
词性信息
注意力机制
aspect-level sentiment analysis
text representation
part-of-spccch information
attention mechanism