期刊文献+

基于NSST域像素相关分析的医学图像融合 被引量:4

Medical image fusion based on pixel correlation analysis in NSST domain
原文传递
导出
摘要 针对像素级多模态医学图像融合信息丢失的问题,提出了一种基于非下采样剪切波变换(NSST)的像素相关性分析(PCAS)的图像融合方法。首先,对源图像进行NSST分解,获得高低频子带。然后,利用提出的中心像素方差计算邻域像素与中心像素的强度相关因子,构建邻域像素相关系数矩阵,并提出将相关性拉普拉斯能量和作为高频方向子带的融合规则。再次,计算低频子带中心像素能量以及邻域像素能量梯度信息,得到低频融合决策图。最后,通过逆变换得到融合结果图像。磁共振图像(MRI)和计算机断层扫描(CT)、单光子发射计算机断层成像(PET)、正电子发射断层成像(SPECT)的脑部图像融合实验结果表明,本文融合方法可以很好地保留源图像的显著信息和纹理细节。 To solve the problem of information loss in pixel-level multimodal medical image fusion,an image fusion method using pixel correlation analysis(PCA)in Non-subsampled Shearlet Transform(NSST)domain is proposed.First,NSST decomposition is performed on the source images to obtain high and low frequency sub-bands.The intensity correlation factor between neighborhood pixels and central pixel is calculated using the proposed center pixel variance,and the correlation coefficient matrix of neighborhood pixels is constructed.The proposed correlation-sum of modified laplacian(C-SML)is used as the fusion rule for high-frequency sub-bands.The energy of the central pixel and the energy gradient information of the neighboring pixels of the low-frequency sub-bands are calculated to obtain the fusion decision map for low-frequency sub-bands.Finally,the fused image is obtained by inverse NSST.The experimental results about magnetic resonance imaging(MRI)and computed tomography(CT),positron emission tomography(PET),single-photon emission computed tomography(SPECT)brain images indicate that the proposed fusion method can well retain the significant information and texture details of the source images.
作者 肖明尧 李雄飞 朱芮 XIAO Ming-yao;LI Xiong-fei;ZHU Rui(College of Computer Science and Technology,Changchun Normal University,Changchun 130032,China;College ofComputer Science and Technology,Jilin University,Changchun 130012,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第9期2640-2648,共9页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61801190) 吉林省自然科学基金项目(20180101055JC) 国家博士后科研基金项目(2017M611323) 吉林省教育厅科学研究项目(JJKH20230920KJ)。
关键词 计算机应用 图像处理 图像融合 非下采样剪切波变换 像素相关性 computer application image processing image fusion non-subsampled shearlet transform(NSST) pixel correlation
  • 相关文献

参考文献2

二级参考文献22

  • 1Cheng Ying-lei, Zhao Rong-chun, Wang Bing, et al. An optimal algorithm of muhisensor image fu sion based on wavelet transform[C]//Processings of 7th International Conference on Signal Processing, Xian, 2004: 1049-1051.
  • 2Li Ming, Wu Shun-jun. A new image fusion algo- rithm based on wavelet transform[C] // Proceedings of 5th International Conference on Computational Intelligence and Multimedia Applications, Xi'an, 2003:154-159.
  • 3Candas E J, Donoho D L. New tight frames of cur- velets and optimal representations of objects wilh piecewise C2 singularities [J]. Communications on Pure and Applied Mathematics, 2004, 57 (2):219-266.
  • 4Do M N, Vetterli M. The contourlet transform: an efficient directional muhiresolution image represen tation[J]. IEEE Transactions on Image Processing, 2005, 14 (12):2091-2106.
  • 5Easley G, I.abate D, I.im W Q. Sparse directional image representations using the discrete shearlet lransform[J]. Applied and Computational Harmonic Analysis, 2008, 25(1):25-16.
  • 6叶传奇,苗启广,王保树.基于非子采样的Contour-1et变换的图像融合方法[J].计算机辅助没汁与图形学学报,2007.19(10):1274-1278.
  • 7Zheng You-zhi, Hou Xiao-dong, Bian Tian-tian, et al. Effective image fusion rules of multiscale image decomposition[C] // Proceedings of the 5th Interna- tional Symposium on Image and Signal Processing and Analysis, Istanbul, 2007 : 362-366.
  • 8Guo K, Lahate D, Lira W Q, et al. Wavelets with composite dilations and their MRA properties[J]. Applied and Computational Harmonic Analysis, 2006, 20(2):202-236.
  • 9Guo K, Labate D. Optimally sparse multidimension- al representation using shearlets[J]. SIAM Journal on Mathematical Analysis , 2007, 39(1):298-318.
  • 10Wang Zhou, Bovik Alan C, Sheikh Hamid R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Im- age Processing, 2004, 13(4): 600-612.

共引文献17

同被引文献18

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部