摘要
分层有机纳米结构(HONs)是一种将具有不同功能的多个成分集成在一个系统中的纳米结构,其在光电子应用中引起了极大的关注.然而,由于不同材料之间结构不相容性的难题,构建具有超低晶格失配率(η)的HONs仍然面临巨大挑战.共晶工程提供了探索合理制备HONs的有力手段,但迄今为止尚未得到系统的证明.在这里,我们展示了一种用于HONs的超低晶格失配异质外延的共晶工程策略.该策略具备足够的通用性,可实现多种材料的集成从而得到不同空间取向的异质结构.通过实验合成了一系列典型HONs,包括三嵌段(η_(1)=0.7%)、分支(η_(2)=0.8%)和核/壳(η_(3)=0.6%)纳米结构,其晶格失配率远低于先前报道的HONs(5%-10%).此外,我们选择性地合成了核/壳的子结构,包括三嵌段和三明治状纳米线,揭示了界面能在HONs形成过程中的诱导作用.作为概念验证,制备所得的不同异质结构成功实现了光子信号的定向转换,为构建下一代集成光电器件奠定了坚实的基础.
The integration of multiple components with different functionalities into a hierarchical organic nanosystem(HON)has attracted significant attention in optoelectronic applications.However,the rational construction of HONs with ultra-low lattice mismatch(η)remains a major challenge due to the inherent structural incompatibility of different materials.Cocrystal engineering holds great promise as a powerful means to explore the controllable fabrication of HONs,but a systematic demonstration has yet to be achieved.Here,we present a cocrystal engineering strategy for ultra-low lattice mismatch heteroepitaxy of HONs,which exhibits sufficient versatility for integrating a variety of materials to construct HONs.Through experimental synthesis,we have realized a series of representative HONs,including threesegment(η_(1)=0.7%),branched(η_(2)=0.8%),and core/shell(η_(3)=0.6%)nanostructures,with lattice mismatch rates significantly lower than those previously reported for HONs(5%-10%).Furthermore,we selectively synthesized substructures of core/shell,including three-segment and sandwich-like nanowires,revealing the role of interface engineering in the formation of unique HONs.As a conceptual validation,the fabricated HONs have successfully achieved oriented photon signal conversion,laying a solid material foundation for constructing the next generation of integrated optoelectronic devices.
作者
吕强
王雪东
余悦
俞燕君
郑敏
廖良生
Qiang Lv;Xue-Dong Wang;Yue Yu;Yan-Jun Yu;Min Zheng;Liang-Sheng Liao(Institute of Functional Nano&Soft Materials(FUNSOM),Jiangsu Key Laboratory for Carbon-Based Functional Materials&Devices,Soochow University,Suzhou 215123,China;National Engineering Laboratory for Modern Silk,College of Textile and Clothing Engineering,Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication,Soochow University,Suzhou 215123,China;Macao Institute of Materials Science and Engineering,Macao University of Science and Technology,Taipa 999078,Macao SAR,China)
基金
supported by the National Natural Science Foundation of China(52173177 and 21971185)
the Natural Science Foundation of Jiangsu Province(BK20221362)
the Science and Technology Support Program of Jiangsu Province(TJ-2022-002)
supported by Suzhou Key Laboratory of Functional Nano&Soft Materials
the Collaborative Innovation Center of Suzhou Nano Science&Technology
the 111 Project
the Joint International Research Laboratory of Carbon-Based Functional Materials and Devices
Soochow University Tang Scholar。