期刊文献+

高马赫数飞行条件下超燃冲压发动机燃烧组织方案数值模拟

Numerical simulation on combustion organization scheme of scramjet at high Mach number
下载PDF
导出
摘要 针对高马赫数飞行条件下(Ma=8,其中燃烧室内流马赫数为3.88)超燃冲压发动机燃烧组织方案的优化问题,采用三维可压缩雷诺平均(RANS)数值模拟方法对采用不同燃料喷射角度和凹腔后倾角的燃烧方案进行了数值模拟研究。结果表明:高马赫数下燃烧主要集中在凹腔和燃烧室近壁区,随着燃料喷射角度的增大,燃烧反应更加剧烈;增大燃料喷射角度和减小凹腔后倾角能提高混合效率,从而提高燃烧效率,燃烧也更充分,但是燃烧引起的总压损失也会相应地提高;高马赫数条件下发动机内流阻力很大,大约是发动机净推力的7~8倍,而增大喷射角度和减小凹腔后倾角有利于提高发动机的推力性能,其中采用135°的逆向燃料喷入方案获得的正推力最大,此时燃烧位置相对靠前,有利于燃烧室设计尺寸的小型化。 Aiming at the optimization problem of combustion organization scheme for the scramjet engine under high Mach number conditions(Ma=8,where the Mach number in the combustor is 3.88),a numerical simulation method with three-dimensional steady compressible RANS was used to study the combustion scheme with different injection angles and cavity angles.The results indicat that the combustion at high Mach numbers occurs mainly in the cavity and near-wall area of the combustor,and the combustion reaction becomes more intense with the increase of injection angle.Greater injection angles and smaller cavity angles not only lead to higher mixing efficiency and more efficient combustion,but also increase the total pressure loss due to combustion.Under high Mach number conditions,the engine flow resistance is high,which is 7-8 times of the total thrust,and increasing the injection angle and reducing the cavity angle are beneficial for improving the engine performance.Among them,the positive thrust achieved by using a 135°reverse fuel injection is the highest,and the combustion position is relatively forward,which is conducive to the miniaturization of combustor design size.
作者 李嘉航 石保禄 赵马杰 王宁飞 LI Jiahang;SHI Baolu;ZHAO Majie;WANG Ningfei(School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China;Chongqing Innovation Center,Beijing Institute of Technology,Chongqing 401120,China)
出处 《火箭推进》 CAS 2023年第5期1-12,共12页 Journal of Rocket Propulsion
基金 国家自然科学基金(52006012,91641204,51676016)。
关键词 高马赫数 超燃冲压发动机 燃烧组织 总压损失 内流阻力 high Mach number scramjet combustion organization total pressure loss internal flow resistance
  • 相关文献

参考文献14

二级参考文献93

  • 1李建平,宋文艳,郑亚明,罗飞腾.超燃冲压发动机一体化设计及数值模拟[J].航空动力学报,2009,24(4):911-917. 被引量:3
  • 2王占学,乔渭阳.预冷却涡轮基组合循环发动机发展现状及应用前景[J].燃气涡轮试验与研究,2005,18(1):53-56. 被引量:16
  • 3黄志澄.空天飞机的真实气体效应[J].气动实验与测量控制,1994,8(2):1-9. 被引量:7
  • 4Vinagradov V, Grachev V, Petrov M. Experimental investiga- tion of 2-D dual mode scramjet with hydrogen fuel at Math 4-6 [R]. AIAA 90-5269,1990.
  • 5Niioka T, Terada K, Kobayashi H, et al. Flame stabilization characteristics of strut divided into two parts in supersonic air- flow[J] Journal of Propulsion and Power, 1995, 11 (1) 112-116.
  • 6Brandstetter A, Denis S R, Kau H P. Flame stabilization in su-personic combustion[J]. AIAA-2002-5224,2002.3.
  • 7Rogers R C,Capriotti D P, Guy R W. Experimental super- sonic combustion research at NASA Langley[R]. AIAA 98- 2506,1998.
  • 8Abdel-Salam T M, Tiwari S N, Mohieldin T O. Effects of ramp swept angle in supersonic mixing[R]. AIAA-2000- 2377,2000.
  • 9Roudakov A S, Schikhmann Y, Semenov V, et al. Flight testing of an axisymmetric scramjet-Russian recent ad- vances E R1. International Astronautical Federation, IAF Paper 93-$4. 458,1993.
  • 10Rodriguez C G. CFD analysis of the ClAM/NASA scram- jet[R]. AIAA-2002-4128,2002.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部