期刊文献+

基于深度强化学习算法的机器人浮动打磨执行装置研究

Research on robot floating polishing actuator based on deep reinforcement learning algorithm
下载PDF
导出
摘要 为实现机器人恒力打磨的需求,文章设计了浮动打磨执行器,进行了打磨控制算法研究和浮动打磨执行器的结构设计,并对浮动打磨执行器系统进行受力分析和动力学建模。在传统PID控制算法的基础上,采用DDPG深度强化学习算法进行PID控制参数的整定,并开展浮动打磨执行器恒力性能实验验证。实验结果表明,文章设计的浮动打磨执行器能够满足恒力控制的要求。通过DDPG深度强化学习算法对PID控制参数整定,减少了繁琐的调参步骤,且具有更好的恒力控制性能。 To meet the constant force polishing needs of robots,this paper designs a floating polishing actuator and conducts research on polishing control algorithms.The structural design of the floating polishing actuator was carried out,and the force analysis and dynamic modeling of the floating polishing actuator system were carried out.On the basis of traditional PID control algorithms,the DDPG deep reinforcement learning algorithm is used to tune the PID control parameters.Conduct experimental verification of the constant force performance of the floating polishing actuator,and the experimental results show that the floating polishing actuator designed in this paper can meet the requirements of constant force control.By using the DDPG deep reinforcement learning algorithm to tune PID control parameters,the tedious parameter tuning steps are reduced,and it has better constant force control performance.
作者 张一然 杨龙 袁博 李长耿 ZHANG Yiran;YANG Long;YUAN Bo;LI Changgeng(CRRC Qingdao Sifang Co.,Ltd.,Qingdao 266111,CHN)
出处 《制造技术与机床》 北大核心 2023年第11期18-22,28,共6页 Manufacturing Technology & Machine Tool
关键词 浮动打磨 恒力控制 深度强化学习 floating grinding constant force control deep reinforcement learning
  • 相关文献

参考文献7

二级参考文献61

  • 1孙波,陈卫东,席裕庚.基于粒子群优化算法的移动机器人全局路径规划[J].控制与决策,2005,20(9):1052-1055. 被引量:77
  • 2叶正茂,赵慧,张尚盈,韩俊伟.基于位置内环的柔顺力控制的研究[J].控制与决策,2006,21(6):651-655. 被引量:10
  • 3Zhang L,Tam H Y, Yuan C M, et al. An investigation of material removal in polishing with fixed abrasives [ J ]. Proceedings of the Institution of Mechanical Engineers, Part B : Journal of Engineering Manufacture ,2002,216 ( 1 ) : 103 - 112.
  • 4Takosoglu J E, Dindorf R F, Laski P A. Rapid prototyping of fuzzy controller pneumatic servo system [ J ]. The International Journal of Advanced Manufacturing Technology,2009,40(3-4) :349 -361.
  • 5Ahn K K, Truong D Q. Online tuning fuzzy PID controller using robust extended Kalman filter [ J ]. Journal of Process Control,2009,19 (6) : 1011 - 1023.
  • 6Anh H P H. Online tuning gain scheduling MIMO neural PID control of the 2-axes pneumatic artificial muscle(PAM) robot ann [ J ]. Expert Systems with Applications, 2010,37 ( 9 ) : 6547 - 6560.
  • 7Wang X, Peng G. Modeling and control for pneumatic manipulator based on dynamic neural network [ C ]// IEEE International Conference on Systems, Man and Cybernetics. Washington, DC,2003:2231 - 2236.
  • 8Kaitwanidvilai S, Parnichkun M. Force control in a pneumatic system using hybrid adaptive neuron-fuzzy model reference control [ J ]. Mechatronics, 2005,15 ( 1 ) : 23 - 41.
  • 9Richer E,Hurmuzlu Y. A high performance pneumatic force actuator system : part II - nonlinear controller design [ J ]. Journal of Dynamic Systems, Measurement, and Control, 2000,122 (3) :426 - 434.
  • 10Saleem A,Abdrabbo S,Tutunji T. On-line identification and control of pneumatic servo drives via a mix-reality environment [ J ]. The International Journal of Advanced Manufacturing Technology,2009,40(5-6) :518 -530.

共引文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部