期刊文献+

复杂背景下人体步态分析方法

Analysis on Human Gait Characteristics Under Complex Background
下载PDF
导出
摘要 为了获得复杂背景下的人体步态信息,提出了基于超像素分割的步态提取方法,通过对关键帧步态能量图构造Gabor二维滤波器对步态能量图进行卷积提取特征,构造5个尺度,8个方向共40个Gabor滤波器组与步态能量图进行卷积操作特取特征,为了更有效地表征特征数据,使用主成分分析进行特征降维,最后选取无监督的分类方法-K均值聚类法进行分类识别,实验结果表明,该方法能够实现步态的有效识别。 In order to obtain human gait information under complex background,a method of gait extraction based on super-pixel segmentation is proposed.By constructing Gabor two-dimensional filter for key frame gait energy map,the features of gait energy map are extracted by convolution,and the convolution operation of 40 Gabor filter groups and gait energy map in 8 directions and 5 scales is constructed.In order to represent the feature number more effectively,according to the research,principal component analysis is used to reduce the dimension,and finally unsupervised classification method K-means clustering method is selected for classification and recognition.The experimental results show that this method can achieve effective gait recognition.
作者 陈松 张国辉 王西泉 陈俊彪 马超 CHEN Song;ZHANG Guohui;WANG Xiquan;CHEN Junbiao;MA Chao(Orinco Group Testing and Research Institute,Huayin 714200;Xi'an Technological University,Xi'an 710021)
出处 《计算机与数字工程》 2023年第8期1876-1880,共5页 Computer & Digital Engineering
基金 中国兵器工业试验测试研究院合作项目“静爆试验图像处理及三维重构”(编号:H201907098) 陕西省自然科学基础研究计划项目“荧光偏振型分子印迹传感器的研究”(编号:2018JQ2075)资助。
关键词 复杂背景 步态识别 超像素分割 K均值聚类 complex background gait recognition super pixel segmentation K-means clustering
  • 相关文献

参考文献2

二级参考文献17

  • 1X Qing-han.Technology review-Biometrics echnology,Application,Challenge,and Computational Intelligence Solutions[J].IEEE Computational Intelligence Magazine,2007,2:5-25.
  • 2Anil K,Ross A,Prabhakar S.An Introduction to Biometric Re-cognition[J].IEEE Transactions on Circuits and Systems for Video Technology,2004,14(1):4-20.
  • 3Murray M,Drought A,Kory R.Walking Patterns of NormalMen[J].Journal of Bone Joint Surgery,1964,6-A:335-360.
  • 4Cutting J,Kozlowski L.Recognizing friends by their walk:Gait perception without familiarity cues[J].Bulletin of the Psychonomic Society,1977,9(5):353-356.
  • 5Lee L,Grimson W E L.Gait Analysis for Recognition and Classification[C]∥Proceedings Fifth IEEE International Conference on Automatic Face and Gesture Recognition.2002:155-162.
  • 6Boulgouris N V,Hatzinakos D,Plataniotis K N.Gait recogni-tion:a challenging signal processing technology for biometric identification[J].IEEE Signal Processing Magazine,2005,22:78-90.
  • 7Chen C H,Liang J M,Zhao H,et al.Factorial HMM and Paral-lel HMM for Gait Recognition[J].IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Reviews,2009,39(1):114-123.
  • 8Liu J Y,Zheng N N.Gait History Image:A Novel TemporalTemplate for Gait Recognition[J].2007IEEE International Conference on Multimedia and Expo,2007,1-5:663-666.
  • 9Li X L,Maybank S J,Yan S C,et al.Gait Components and Their Application to Gender Recognition[J].IEEE Transactions on Systems,Man, and Cybernetics,Part C:Applications and Reviews,2008,38(2):145-155.
  • 10Ojala T,Pietikinen M,Harwood D.A comparative study of texture measures with classification based on feature distributions[J].Pattern Recognition,1996,29:51-59.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部