期刊文献+

基于图像处理的三支聚类

Three-way clustering based on digital image processing
下载PDF
导出
摘要 将数字图像处理中模糊锐化算子与三支聚类进行结合,提出了一种基于图像处理的三支聚类算法。该算法通过逆多元二次核函数将数据集的密度量化为灰度值,对数据总体采用模糊与锐化操作,提取锐化后灰度值较高的数据区域,将低密度区域从原始数据中删除。对灰度值较高的数据采用传统的聚类算法得到不同的类簇,然后对每个类簇利用图像模糊算子得到类簇的核心域,锐化算子得到类簇数据边界域,从而获得每个类簇的三支表示。试验采用不同的UCI数据集,通过比较聚类指标Adjusted Rand Index(ARI),Normalized Mutual Information(NMI)和Adjusted Mutual Information(AMI),验证了该聚类算法的有效性。 A three-way clustering algorithm based on image processing is proposed by combining blurring and sharpening operations in digital image processing with three-way clustering.The proposed algorithm quantifies the density of the dataset into gray values through inverse multivariate quadratic kernel function.By blurring and sharpening operations for the university,we delete the samples with low density and obtain samples with high density.Then,different clusters are produced by traditional clustering algorithm for samples with high density.For each cluster,the core region and fringe region are obtained through blurring operation and sharpening operation,respectively.The experiments on different UCI datasets verify that the clustering algorithm is stable and effective by comparing the clustering indexes adjusted rand index(ARI),normalized mutual information(NMI)and adjusted mutual information(AMI).
作者 管文瑞 姜文刚 王平心 杨习贝 Guan Wenrui;Jiang Wengang;Wang Pingxin;Yang Xibei(School of Automation,Jiangsu University of Science and Technology,Zhenjiang 212003,China;School of Sciences,Jiangsu University of Science and Technology,Zhenjiang 212003,China;School of Computer,Jiangsu University of Science and Technology,Zhenjiang 212003,China)
出处 《南京理工大学学报》 CAS CSCD 北大核心 2023年第5期643-650,共8页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(62076111,61773012) 江苏省研究生科研与实践创新计划项目(KYCX23_3883)。
关键词 三支聚类 非参数核密度估计 数字图像处理 模糊锐化 three-way clustering nonparametric kernel density estimation digital image processing blurring and sharpening
  • 相关文献

参考文献7

二级参考文献44

  • 1Chan T F, Vese L A. Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
  • 2Li C M, Huang R, Ding Z H, Gatenby J C, Metaxas D N, Gore J C. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Transactions on Image Processing, 2011, 20(7): 2007-2016.
  • 3Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 1989, 42(5): 577-685.
  • 4Vese L A, Chan T F. A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision, 2002, 50(3): 271-293.
  • 5Jung Y M, Kang S H, Shen J H. Multiphase image segmentation via Modica-Mortola phase transition. SIAM Journal of Applied Mathematics, 2007, 67(5): 1213-1232.
  • 6Lie J, Lysaker M, Tai X C. A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Transactions on Image Processing, 2006, 15(5): 1171 -1181.
  • 7Gao S B, Yan Y Y. Brain MR image segmentation via a multiphase level set approach. Journal of Information and Computational Science, 2012, 16(9): 4705-4711.
  • 8Dunn J C. A graph theoretic analysis of pattern classification via Tamura's fuzzy relation. IEEE Transactions on Systems, Man, and Cybernetics, 1974, SMC-4(3): 310-313.
  • 9Bezdek J C. A convergence theorem for the fuzzy ISODATA clustering algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, PAMI-2(1): 1-8.
  • 10Cao H B, Deng H W, Wang Y P. Segmentation of M-FISH images for improved classification of chromosomes with an adaptive fuzzy C-means clustering algorithm. IEEE Transactions on Fuzzy Systems, 2012, 20(1): 1-8.

共引文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部