摘要
分布式电源(DG)是一种与环境兼容、利用清洁能源发电的装置,能够满足用户对电量的特殊需求。因此,将分布式电源接入电网不仅有助于保证电网运行安全、提高供电可靠性,还可以将多余的电力反馈给电网。然而,分布式发电接入配电网后,并不一定能降低配电系统的网损或提高电网稳定性。如果,由于并网规划方案设计不够理想,反而可能对电网造成不利影响。因此,在分布式电源接入配电网的规划中,选择合适的接入位置和容量至关重要。为了实现最佳规划设计,本文选择了具有结构简单、执行方便、优化效率高、参数设置简单、鲁棒性好等优点的差分算法。通过Matlab进行仿真,确定了最佳接入位置,计算出了最优容量,并得到了最优目标函数,进而达到最佳的规划设计效果。
Distributed generation(DG)is a device that generates power using clean energy sources,making it environmentally compatible and capable of meeting specific user demands for electricity.Therefore,integrating distributed generation into the grid not only helps ensure the safe operation of the grid and improve power supply reliability but also allows excess electricity to be fed back into the grid.However,the integration of distributed generation into the distribution network does not necessarily lead to a reduction in network losses or an improvement in grid stability.If the grid integration planning is not well-designed,it may even have adverse effects on the grid.Therefore,in the planning of distributed generation integration into the distribution network,selecting the appropriate connection point and capacity is crucial.In order to achieve optimal planning and design,this paper employs a differential algorithm known for its advantages such as simplicity in structure,ease of implementation,high optimization efficiency,simple parameter settings,and good robustness.Through simulation using Matlab,the optimal connection point is determined,the optimal capacity is calculated,and the optimal objective function is obtained,thereby achieving the best planning and design outcome.
作者
许乾隆
丁宜海
白练
冯海俊
李钟煦
张璐达
王春雨
XU Qianlong;DING Yihai;BAI Lian;FENG Haijun;LI Zhongxu;ZHANG Luda;WANG Chunyu(Shengsi County Power Supply Company,State Grid Zhejiang Electric Power Co.,Ltd.,Shengsi 202450,Zhejiang,China;State Grid Zhejiang Electric Power Co.,Ltd.,Hanhzhou 310000,Zhejiang,China.)
出处
《电力大数据》
2023年第6期36-48,共13页
Power Systems and Big Data
关键词
分布式电源
并网
差分进化算法
最佳位置
最优容量
distributed power supply
grid connection
differential evolution algorithm
best location
optimal capacity