期刊文献+

Hollow ZSM-5 encapsulated with single Ga-atoms for the catalytic fast pyrolysis of biomass waste

下载PDF
导出
摘要 The development of efficient metal-zeolite bifunctional catalysts for catalytic fast pyrolysis(CFP) of biomass waste is highly desirable for bioenergy and renewable biofuel production.However,conventional metal-loaded zeolites often suffer from metal sintering during pyrolysis and are thus inactivated.In this study,single-site Ga-functionalized hollow ZSM-5(GaO_x@HS-Z5) was synthesized via an impregnationdissolution-recrystallization strategy without H_(2) reduction.The Ga atom was coordinated to four oxygen atoms in HS-Z5 frameworks.Benefitting from the highly dispersed single-Ga atoms and hollow zeolite framework,3GaO_x@HS-Z5 performed the best in producing hydrocarbon-rich bio-oil compared to impregnated 3GaO_x/HS-Z5 and H_(2)-reduced 3Ga@HS-Z5 in the maize straw CFP.In particular,3GaO_x@HS-Z5 delivered the highest bio-oil yield(23.6 wt%) and hydrocarbon selectivity(49.4 area%).3GaO_x@HS-Z5 also retained its structural integrity and catalytic activity after five pyrolysis-regeneration cycles,demonstrating its advantage in practical biomass CFP.The elimination of H_(2) reduction during the synthesis of catalyst provides an additional advantage for simplifying the CFP process and reducing operating costs.The retained Ga micro-environment and anti-sintering properties were unique for 3GaO_x@HS-Z5,as severe metal sintering occurred during pyrolysis for other metals(e.g.,NiO_x,ZnO_x,FeO_x,and CoO_x) that encapsulated HS-Z5.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期363-373,共11页 能源化学(英文版)
基金 supported by the National Natural Science Foundation of China (22176009 21906005) the Beijing Natural Science Foundation (8222064) the Bingtuan Science and Technology Program (2023CB008-21) the CNPC Innovation Foundation (2022DQ02-0406) the financial support from Beihang University。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部