期刊文献+

基于GCN-BiLSTM的短时交通流预测模型 被引量:4

Short-term Traffic Flow Prediction Model Based on GCN-BiLSTM
下载PDF
导出
摘要 文中提出图卷积网络(GCN)与双向长短时记忆神经网络(BiLSTM)组合短时交通流预测模型.利用图卷积网络提取路网拓扑结构解决拓扑关系问题,提取路网间的空间特征,利用双向长短时记忆神经网络用于学习交通数据的动态变化以获取时间相关性,融合GCN-BiLSTM模型同时考虑路网时空关系实现交通流预测.结果表明:文中提出的方法能更好地适应在不同交通流特性条件下的交通流,工作日和周末的预测偏差相较于经典算法降低12.24%和13.20%. A short-term traffic flow forecasting model combining graph convolution network(GCN)and bidirectional long-term memory neural network(BiLSTM)was proposed.The topological structure of road network was extracted by graph convolution network to solve the topological relationship problem and extract the spatial characteristics between road networks.The bidirectional long-term and short-term memory neural network was used to learn the dynamic changes of traffic data to obtain the time correlation,and the GCN-BiLSTM model was fused to realize the traffic flow prediction considering the time-space relationship of the road network.The results show that the method proposed in this paper can better adapt to the traffic flow under different traffic flow characteristics,and the prediction deviation of working days and weekends is reduced by 12.24%and 13.20%compared with the classical algorithm.
作者 张阳 胡月 陈德旺 陈云飞 ZHANG Yang;HU Yue;CHEN Dewang;CHEN Yunfei(School of Transportation,Fujian University of Technology,Fuzhou 350118,China;College of Computer and Data Science,Fuzhou University,Fuzhou 350108,China;School of Electronic,Electrical Engineering and Physics,Fujian University of Technology,Fuzhou 350118,China)
出处 《武汉理工大学学报(交通科学与工程版)》 2023年第5期802-806,共5页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然科学基金(61976055) 福建省自然科学基金(2019J01781)。
关键词 深度学习 交通流预测 BiLSTM GCN 城市路网 deep learning traffic prediction BiLSTM GCN urban road network
  • 相关文献

参考文献4

二级参考文献20

共引文献112

同被引文献38

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部