期刊文献+

基于改进YOLOv4的磁瓦缺陷检测算法 被引量:4

Magnetic Tile Defect Detection Algorithm Based on Improved YOLOv4
下载PDF
导出
摘要 磁瓦在生产制造过程中会因为工艺问题产生各种不同的缺陷,传统检测算法检测速度慢、精度低,为了实现磁瓦表面缺陷快速有效的检测,文中提出了一种改进YOLOv4算法的磁瓦缺陷检测方法。首先将scSE注意力模块嵌入特征提取主干网络中的CSPnet的残差单元中,增强小目标的空间特征和通道特征;其次,采用空洞卷积空间池化金字塔(ASPP)模块代替原有SPP模块,增大卷积核感受野,更多地保留图像细节并增强信息相关性;最后,在颈部部分用深度可分离卷积替换5次卷积块中的传统卷积,以此来更好地对特征信息进行提取,减小模型的参数量。实验结果表明,改进的YOLOv4算法对磁瓦表面缺陷检测的平均精度值达到96.67%,检测速度为44 ms,模型大小为249 MB,明显优于原始算法,具有较高的检测精度和实用性。 Various defects occur in the manufacturing process of magnetic tiledue to process problems,and traditional detection algorithms have slow detection speed and low accuracy.In order to achieve fast and effective detection of surface defects of magnetic tiles,this paper proposes a defect detection method for magnetic tiles with improved YOLOv4 algorithm.Firstly,the scSE attention module is embedded in the residual unit of CSPnet in the feature extraction backbone network to enhance the spatial features and channel features of small targets.Secondly,the empty convolutional space pooling pyramid(ASPP)module is used instead of the original SPP module to increase the perceptual field of convolutional kernel,retain more image details and enhance information relevance.Finally,the traditional convolution in the five convolution blocks is replaced by the depth-separable convolution in the neck part to better extract the feature information and reduce the number of parameters of the model.Experimental results show that the improved YOLOv4 algorithm achieves an average accuracy value of 96.67%,a detection speed of 44 ms,and a model size of 249 MB.It is significantly better than the original algorithm and has higher detection accuracy and practicality.
作者 张晓晓 邓承志 吴朝明 曹春阳 胡诚 ZHANG Xiaoxiao;DENG Chengzhi;WU Zhaoming;CAO Chunyang;HU Cheng(School of Information Engineering,Nanchang Institute of Technology,Nanchang 330099,China)
出处 《计算机科学》 CSCD 北大核心 2023年第S02期377-383,共7页 Computer Science
基金 江西级研究生创新专项基金项目(YC2021-S184) 南昌工程学院研究生创新专项计划项目(YJSCX202130)。
关键词 缺陷检测 YOLOv4 scSE注意力 空洞卷积池化 深度可分离 Defect detection YOLOv4 scSE attention Void convolution pooling Depth-separabl
  • 相关文献

参考文献1

二级参考文献5

共引文献18

同被引文献28

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部