期刊文献+

基于文本引导图像语义融合的跨模态哈希检索

Cross-modal Hash Retrieval Based on Text-guided Image Semantic Fusion
下载PDF
导出
摘要 基于哈希的跨模态检索算法具有存储消耗低和搜索效率高的特点,跨模态哈希检索在多媒体数据中的应用成为当前的研究热点。目前对于跨模态哈希检索的主流方法是研究模态间哈希码的学习能力,忽视了不同模态之间的特征学习能力以及语义融合能力。将Clip中的图像-文本匹配问题转换为像素-文本匹配问题,文本特征经过Transformer解码器查询图片特征,鼓励文本特征学习到最相关的图片像素级信息,并将像素-文本匹配得分引导图片模态的特征学习,挖掘出不同模态之间的更深层次的相关联的语义信息,并引入二元交叉熵损失函数来提升模态之间的语义融合能力,在高维特征映射到低维的汉明空间时能够得到高质量的二值哈希码。在MIRFLICKR-25K和NUS-WIDE数据集上进行对比实验,实验结果表明所提算法模型在不同长度的哈希码条件下的检索效果均优于目前主流的算法。 Hash-based cross-modal retrieval algorithm is characterized by low storage consumption and high search efficiency,and the application of cross-modal hash retrieval in multimedia data has become a current research hot-spot.At present,the mainstream method for cross-modal hash retrieval is to study the learning ability of intermodal hash codes,ignoring the feature lear-ning ability and semantic fusion ability between different modes.This paper transforms the image-text matching problem in Clip into pixel-text matching problem,the text features query image features through Transformer decoder,encourage text features to learn the most relevant image pixel level information,and the pixel-text matching score guide image modal feature learning,dig out the deeper related semantic information between different modalities,and introduce binary cross-entropy loss function to improve the semantic fusion ability between modalities.High-quality binary hash codes can be obtained when high-dimensional features are mapped to a low-dimensional Hamming space.Comparative experiments are carried out on MIRFLICKR-25K and NUS-WIDE datasets,and the experimental results show that the present algorithm model performs better than the current mainstream algorithms under hash codes of different lengths.
作者 顾宝程 刘立 GU Baocheng;LIU Li(School of Computing,University of South China,Hengyang,Hunan 421001,China)
出处 《计算机科学》 CSCD 北大核心 2023年第S02期389-394,共6页 Computer Science
关键词 哈希 CLIP TRANSFORMER 二元交叉熵 跨模态检索 Hash Clip Transformer Binary cross-entropy Cross-modal retrieval
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部