期刊文献+

δ-sober空间及其性质

δ-sober Spaces and Its Properties
下载PDF
导出
摘要 文中讨论了δ-sober空间的一些基本性质,引入了s_(2)-弱收敛空间的概念,并讨论了δ-sober空间和s_(2)-弱收敛空间的关系。主要结论有:(1)δ-sober空间的子空间为δ-sober空间;(2)设(X,τ)为IDC空间,则(X,τ)为s_(2)-弱收敛空间当且仅当(X,τ)为δ-sober空间;(3)s_(2)-弱收敛的IDC空间上的拓扑τ与在特殊化序下的σ_(2)-拓扑一致,并且O(X)=O_(σ2)(X)=O_(SI_(2))(X);(4)设(X,τ)为SI_(2)-拟连续空间,则(X,τ_(SI_(2)))为δ-sober空间;(5)设(X,τ)为δ-sober的局部超紧空间,则(X,τ)为s_(2)-拟连续偏序集。 This paper discusses some basic properties ofδ-sober spaces,introduces the concept of s_(2)-weakly convergent spaces,and discusses the relationship betweenδ-sober spaces and s_(2)-weakly convergent spaces.The main conclusions are as follows:1)The subspaces ofδ-sober spaces areδ-sober spaces.2)If(X,τ)is an IDC space,then it is an s_(2)-weakly convergence space if and only if it is aδ-sober space.3)The topology on the s_(2)-weakly convergence IDC space is consistent with the σ_(2)-topology and O(X)=Oσ2(X)=O SI 2(X).4)If(X,τ)is an SI 2-quasicontinuous space,then it is aδ-sober space.5)Let(X,τ)be a locally hypercompactδ-sober space,then it is an s_(2)-quasi continuous poset.
作者 王武 谭彬 张舜 WANG Wu;TAN Bin;ZHANG Shun(Basic Course Department of Zhonghuan Information College,Tianjin University of Technology,Tianjin 300380,China;School of Science,Tianjin University of Technology,Tianjin 300384,China;Mathematics Teaching Department of Tianjin Ren’ai College,Tianjin 301636,China)
出处 《计算机科学》 CSCD 北大核心 2023年第S02期536-539,共4页 Computer Science
基金 天津市教委科研计划项目(2018KJ147) 2021年高等学校大学数学教学研究与发展中心教学改革项目(CMC20210115)。
关键词 SI_(2)-连续 SI_(2)-拓扑 δ-sober空间 s_(2)-弱收敛 IDC空间 SI_(2)-continuous SI_(2)-topology δ-sober space s_(2)-weak convergence IDC space
  • 相关文献

参考文献11

二级参考文献65

  • 1Jin Bo YANG,Mao Kang LUO.Priestley Spaces,Quasi-hyperalgebraic Lattices and Smyth Powerdomains[J].Acta Mathematica Sinica,English Series,2006,22(3):951-958. 被引量:14
  • 2Priestley, H. A.: Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc., 2, 186-190 (1970)
  • 3Venugopalan, P.: Priestley spaces, Proceedings of the American Mathematics Society, 109(3), 605-610(1990)
  • 4Flagg, B,: Algebraic theories of compact pospaces. Topology and Its Applications, 77, 277-290 (1997)
  • 5Lawson, J. D.: The upper interval topology, Property M, and compactness, Electronic Notes in Theoretical Computer Science, 1998
  • 6Xu, X. Q., Liu, Y. M.: The Scott topology and Lawson topology on a Z-quasicontinuous domain (in Chinese). Chin. Ann. of Math., 24A(3), 365-376 (2003)
  • 7Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., Scott, D.: Continuous lattices and domains, Cambridge University Press, 2003
  • 8Heckmann, R.: Power Domain Constructions, PhD thesis, University des Saarlandes, 1990
  • 9Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., Scott, D.: A compendium of continuous lattices, Springer-Verlag, Berlin, 1980
  • 10Xu, X. Q., Liu, Y. M.: Regular relations and strictly completely regular ordered spaces. Topology and Its Applications, 135, 1-12 (2004)

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部