期刊文献+

基于注意力机制和ConvLSTM的船舶交通流量预测算法

Ship Traffic Flow Prediction Algorithm Based on Attention Mechanism and ConvLSTM
下载PDF
导出
摘要 船舶交通流量预测是港口智能交通系统的关键技术之一,对港口运输的效率和安全起到至关重要的作用。针对现有预测方法难以有效提取船舶交通流量数据中的时空相关性特征信息的问题,提出了一种基于注意力机制和ConvLSTM的预测方法(ACLN)。ACLN首先通过深度的ConvLSTM构建编码网络,有效提取船舶交通流量数据中的时空相关性特征信息;其次通过注意力机制对提取的时空相关特征信息进行重要性关注,使模型在预测的过程中自动关注更重要的特征信息;最后通过多层的ConvLSTM和CNN构建预测网络,对提取的时空特征信息进行解析并输出预测结果。在真实的港口船舶交通流量数据上验证了所提方法的有效性,实验结果表明,所提方法的预测性能明显优于目前公开的预测方法,能够对一定区域进行有效的长短时预测,具有一定的实用价值。 Ship traffic flow prediction is one of the key technologies of port intelligent transportation system,which plays a vital role in the efficiency and safety of port transportation.Aiming at the problem that the existing prediction methods are difficult to effectively extract the spatio-temporal feature information from the ship traffic flow data,a prediction method based on attention mechanism and ConvLSTM(ACLN)is proposed.ACLN first constructs a encoding network through the deep ConvLSTM to effectively extract the spatio-temporal feature information from the ship traffic flow data.Secondly,the attention mechanism is used to pay attention to the importance of the extracted spatio-temporal feature information,so that the model can automatically pay attention to the more important feature information in the process of prediction.Finally,the prediction network is constructed by multiple layers of ConvLSTM and CNN to parse the extracted spatiotemporal feature information and output the prediction result.The effectiveness of the proposed method is verified on the real port ship traffic flow data.Experimental results show that the prediction performance of the proposed method is significantly better than that of the state-of-art prediction methods,and it can perform the long and short time prediction effectively in a certain area,and has a certain practical value.
作者 李刚 宋文 陈致远 LI Gang;SONG Wen;CHEN Zhiyuan(CHN ENERGY Huanghua Port Affairs Co.,LTD,Cangzhou,Hebei 061113,China;Insitute of Marine Science and Technology,Shandong University,Qingdao,Shandong 266237,China)
出处 《计算机科学》 CSCD 北大核心 2023年第S02期686-692,共7页 Computer Science
基金 国家自然科学基金(62102228) 山东省自然科学基金(ZR2021QF063) 交通运输部交通强国建设试点任务项目。
关键词 智能交通 智能港口 船舶流量预测 时空特征提取 卷积神经网络 长短期记忆网络 卷积长短期记忆网络 注意力机制 Intelligent transportation Intelligent port Ship flow prediction Spatio-temporal feature extraction Convolutional neural network Long short-term memory network Convolutional long short-term memory network Attention mechanism
  • 相关文献

参考文献11

二级参考文献80

共引文献179

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部