期刊文献+

基于压缩感知的互联网数据采集技术研究

Research on Internet Data Acquisition Technology Based on Compression Sensing
下载PDF
导出
摘要 互联网数据量大、种类多,传统数据采集技术无法满足当前的数据采集需求。基于压缩感知理论,提出了互联网数据采集的新方法。采用K-SVD字典学习对互联网数据进行自适应稀疏表示,在此基础上进行压缩观测和信号传输。在满足有限等距性的基础上进行信号重构,从而获得高精度的互联网重构数据。将提出的数据采样技术应用于能源互联网中,同时和DCT字典、FFT字典对能源互联网数据的重构结果进行对比。结果表明,采用K-SVD对能源互联网数据采集具有比较高的数据恢复精度,这对互联网数据采集技术的发展具有一定的参考价值。 Due to a large amount and a variety of internet data,traditional data collection technologies cannot meet the current data collection needs.A new method for internet data collection is proposed based on compressed sensing theory.The K-SVD dictionary is used to learn the adaptive sparse representation of internet data,and the compression observation and signal transmission are carried out on this basis.On the basis of satisfying the requirements of finite equidistance,signal reconstruction is carried out to obtain high-precision internet reconstruction data.The proposed data sampling technology is applied to the energy internet,and the reconstruction results of the energy internet data are compared with DCT dictionary and FFT dictionary.The results show that K-SVD has relatively high data recovery accuracy for energy internet data collection,which has a certain reference value for the development of internet data collection technology.
作者 赵艳平 胡乃红 ZHAO Yanping;HU Naihong(Anhui Technical College of Water Resources and Hydropower,Hefei 231603,China)
出处 《长春工程学院学报(自然科学版)》 2023年第3期97-100,共4页 Journal of Changchun Institute of Technology:Natural Sciences Edition
基金 安徽省高等学校自然科学研究重点项目(2022AH052293)。
关键词 压缩感知 K-SVD字典 互联网数据采集 compression sensing K-SVD dictionary internet data collection
  • 相关文献

参考文献10

二级参考文献78

  • 1李永贵,左鹏,熊建明.跳频通信体制的完善与发展问题研究[c]//2009军事通信抗干扰会议论文集,2009.
  • 2牛英滔,陈建忠,姚富强.基于干扰认知的多参数自适应抗干扰通信技术探索[C]∥2009军事通信抗干扰会议论文集,2009.
  • 3Donoho D. Compressed Sensing [J].IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
  • 4Davenport M A, Boufounos P T, Wakin M B, et al. Signal Processing with Compressive Measurements [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):445-460.
  • 5张雄伟,曾理,黄建军.一种基于压缩感知理论的频谱感知新方案[c]//2011军事通信抗干扰研讨会论文集,2011.
  • 6Flandrin P, Borgnat P. Time-Frequency Energy Distributions Meet Compressed Sensing[J]. IEEE Transactions on Signal Processing, 2010, 58(6):2974-2982.
  • 7Yuan J, Tian P, Yu H. The Detection of Frequency Hopping Signal Using Compressive Sensing[C]//Proc of Int 'l Conf on Information Engineering and Computer Science, 2009: 1- 4.
  • 8Angelosante D, Giannakis G B, Sidiropoulos N D. Estimating Multiple Frequency-Hopping Signal Parameters Via Spare Linear Regression[J]. IEEE Transactions on Signal Processing, 2010, 58(10)..5044-5056.
  • 9石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:713
  • 10齐建东,蒋禧,赵燕东.基于无线多媒体传感器网络的森林病虫害监测系统[J].北京林业大学学报,2010,32(4):186-190. 被引量:20

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部