期刊文献+

基于频繁项集的海上目标编组挖掘

Mining Marine Grouped Targets Based on Frequent Itemsets
下载PDF
导出
摘要 从海量海上目标数据中挖掘出编组信息,并评估其任务能力,对海上目标身份刻画有着重要意义。探讨了轨迹相似及轨迹聚类理论在海上目标编组挖掘中的应用模式,提出一种基于频繁项集的目标编组快速挖掘算法,并提出基于海量数据的海上目标编组模型,可以自动挖掘并给出不同置信度参数下的潜在目标编组列表。基于船舶AIS数据,实验验证了该方法的有效性,能够从目标轨迹大数据中得到海上目标的典型编组。 It is of great significance to make characterization of the identity of marine targets by mining grouped information from massive marine target data and evaluate their mission capability.Firstly,the application pattern of track similarity theory and track clustering theory in grouped target mining is discussed,and then a fast mining algorithm for target grouped based on frequent itemsets is proposed,which can automatically mine and give a list of potential target groups by different confidence parameters.The effectiveness of this method is verified by experiments based on ship AIS data,and the typical grouped marine targets can be obtained from a large number of target track data.
作者 卫强 袁昱纬 邓勇 WEI Qiang;YUAN Yuwei;DENG Yong(Unit 91977 of PLA,Beijing 102200,China;Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China)
出处 《火力与指挥控制》 CSCD 北大核心 2023年第10期139-144,152,共7页 Fire Control & Command Control
关键词 频繁项集 关联规则 数据挖掘 置信度 目标编组 frequent itemsets association rule data mining degree of confidence grouped targets
  • 相关文献

参考文献4

二级参考文献40

  • 1彭瑛,胡明华,张颖.动态航迹推测方法[J].交通运输工程学报,2005,5(1):61-65. 被引量:30
  • 2何长英.基于遗传算法的微分方程模型参数优化[J].电脑知识与技术(技术论坛),2005(6):78-80. 被引量:5
  • 3沈颖,薛安克,王瑞荣.曲线拟合技术在信息融合性能评估中的应用[J].杭州电子科技大学学报(自然科学版),2005,25(2):25-28. 被引量:6
  • 4夏伟,李朝辉,常春藤.MATLAB控制系统仿真与实例详解[M].北京:人民邮电出版社,2008.
  • 5Pop R L, Pattipati K R, Bar-Shalom Y. M-best S-D assignment algorithm with application to multitarget tracing[ J]. IEEE Trans on AC, 2001, 37(1): 22-38.
  • 6YU B, YANG Z Z, YAO B Z. Bus arrival time prediction using support vector machines [ J ]. Journal of Intelligent Transportation Systems, 2006, 11(4): 151-158.
  • 7BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 8BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 9HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 10BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.

共引文献711

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部