期刊文献+

云计算下的自适应资源配置方法研究

Research on Adaptive Resource Allocation Method in Cloud Computing
下载PDF
导出
摘要 随着国家电网规模不断扩大和电网复杂性日益增加,云数据中心大规模应用云计算、虚拟化、微服务等技术,其运维工作面临诸多新挑战。尽管云用户可以访问大量的资源,但云计算环境中大多低效的资源配置方法导致了不合理的成本和资源的浪费。为了解决这一问题,本研究基于云计算环境下的系统运行状态,提出了一种可靠的性能感知云弹性框架(PACE)进行自适应资源配置。该框架围绕状态检测、资源配置和系统优化三项关键服务,旨在实现可靠的决策制定、高效的工作负载执行以及最佳配置的识别,从而最大程度地提升应用程序性能和资源利用效率。最后,利用行业标准应用程序和最先进的基准来证明了所提出框架的有效性。 With the continuous expansion of the national power grid and the increasing complexity of the power grid,cloud data centers are widely adopting technologies such as cloud computing,virtualization,and microservices.However,their operational tasks are facing numerous new challenges.Despite the abundant resources accessible to cloud users,inefficient resource allocation methods in cloud computing environments lead to unreasonable costs and wastage of resources.To address this issue,this paper proposes a reliable Performance-Aware Cloud Elasticity(PACE)framework for adaptive resource allocation based on the operational status of systems in cloud computing environments.This framework revolves around three key services:state detection,resource configuration,and system optimization.Its objective is to achieve reliable decision-making,efficient workload execution,and optimal configuration recognition,thus maximizing application performance and resource utilization efficiency.Finally,the effectiveness of the proposed framework is demonstrated using industry-standard applications and state-of-the-art benchmarks.
作者 韩维 李子乾 张月 Han Wei;Li Ziqian;Zhang Yue(Customer Service Center of State Grid Corporation of China,Tianjin,China)
出处 《科学技术创新》 2023年第26期92-95,共4页 Scientific and Technological Innovation
关键词 云计算 资源配置 LSTM自编码器 K-MEANS聚类 遗传算法 cloud computing resource configuration LSTM autoencoder K-means clustering genetic algorithm
  • 相关文献

参考文献6

二级参考文献41

  • 1杨聚加.云计算技术在医院的信息化建设中的实践探析[J].中文科技期刊数据库(文摘版)工程技术,2021(9):146-147. 被引量:1
  • 2李培强,李欣然,陈辉华,唐外文.基于模糊聚类的电力负荷特性的分类与综合[J].中国电机工程学报,2005,25(24):73-78. 被引量:131
  • 3Mo C, Liu B. Research and realization of an anti-noise atrto-focusing algorithm [ C]// Intelligent Htrmn-Machine Systems and Cybernetics (IHMSC). China,Hangzhou, 2013 5th International Corerence on. 2013:255 - 258.
  • 4Kumar M S, Purusothaman T. Explicit allocation strategy with deadline and budget constraint algorithm in bag of tasks grid [J]. Journal of Computer Science, 2012, 8(7) :110-117.
  • 5Aghazarian V, Delavar A G, Motlagh N G, et al. RQSG-I: an optimized real time scheduling algorithm for tasks allocation in grid environments[C]// Com- munication Software and Networks (ICCSN), 2011 IEEE 3rd International Conference on. China, Xi'an IEEE, 2011: 205-210.
  • 6Altmann M Q D J. Resource allocation algorithm for light eornmunieation grid-based workflows within an SLA context [J]. International Journal of Parallel E- mergent & Distributed Systems, 2009, 24(1) :31-48.
  • 7Zheng Z, Zhao T, Zhang Y. et al. Optimization of grid resource allocation using improved particle swarm optimization algorithm [C]//2010 International Forum on Information Technologies and Application. China, Qingdao, 2010.
  • 8DoulamisNikolaos D, DoulamisAnastasios D, Varvari- gos Emmanouel A, et al, Fair scheduling algorithms in grids [J]. IEEE Transactions on Parallel and Distribu- ted Systems, 2012,2(3) : 1631-1647.
  • 9李智勇,吴晶莹,吴为麟,宋保明.基于自组织映射神经网络的电力用户负荷曲线聚类[J].电力系统自动化,2008,32(15):66-70. 被引量:43
  • 10薛洪波,伦淑娴.粒子群算法在多目标优化中的应用综述[J].渤海大学学报(自然科学版),2009,30(3):265-269. 被引量:39

共引文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部