期刊文献+

基于广义量词理论的亚氏三段论逻辑的公理化

Axiomatization of Aristotelian Syllogistic Logic based on Generalized Quantifier Theory
下载PDF
导出
摘要 仅仅以EIO-3亚氏三段论为基础公理,利用亚氏量词的三种否定量词的定义、亚氏量词no和some的对称性、多个命题推理规则,就可以给出亚氏三段论逻辑直观明了的形式化公理系统;利用典范模型的方法,就可以较为简洁地证明其完全性和可靠性,从而大大简化了之前完全性和可靠性的证明。这一创新研究不仅而且有助于人工智能中的知识表示和知识推理,而且有助于亚氏三段论逻辑的进一步发展。 Only taking EIO-3 syllogism as the basic axiom,and making use of the definition of three negative quantifiers of Aristotelian quantifiers,the symmetry of Aristotelian quantifiers“no”and“some”,and several propositional reasoning rules,one can give the intuitive and clear formal axiomatic system for Aristotelian syllogistic logic.Moreover,by using the method of canonical model,one can prove its completeness and soundness more concisely,which greatly simplifies the previous proofs of completeness and soundness.This innovative research not only contributes to knowledge representation and knowledge reasoning in artificial intelligence,but also contributes to the further development of Aristotelian syllogistic logic.
作者 李慧 张呈 LI Hui;ZHANG Cheng(School of Philosophy,Anhui University,Hefei 230039,China)
出处 《贵州工程应用技术学院学报》 2023年第4期77-86,共10页 Journal of Guizhou University Of Engineering Science
基金 2022年国家社科基金后期项目“面向人工智能的信念-愿望-意图逻辑的哲学基础及其前沿问题研究”,项目编号:22FZXB092。
关键词 亚氏三段论 公理 亚氏量词 规则 Aristotelian syllogisms axioms Aristotle quantifiers rules
  • 相关文献

参考文献6

二级参考文献31

  • 1林胜强,张晓君.广义量词的推理模式研究[J].湖南科技大学学报(社会科学版),2014,17(6):29-33. 被引量:8
  • 2张晓君.广义量词的语义性质研究[D].北京:中国社会科学院,2011.
  • 3Pietarinen A. Signs of Logic [ M ]. Dordrecht : Springer, 2006.
  • 4Mostowski A. On a Generalization of Quantifiers [ J ]. Fund Math, 1957 (44) : 12 - 36.
  • 5Barwise J, Cooper R. Generalized Quantifiers and Natural Language [ J ]. Linguistics and Philosophy, 1981,4 (2) :159 - 219.
  • 6Van Bethem J. Quantifiers and Inference [ C ]//M. Krynicki et al. (eds). Quantifiers: Logic, Models and Computation. Netherlands: Springer, 1995, Vol II.
  • 7Peters S, Westersthl D. Quantifiers in Language and Log/c [ M ]. New York : Claredon Press, 2006.
  • 8Szymanik J. Quantifiers in Time and Space [ M ]. Polen : Geboren te Warschau, 2009.
  • 9Moss L S. Syllogistic Logics with Comparative Adjectives [ J ]. Journal of Logic, Language and Information, 2011 (3) :397 -417.
  • 10Chow Ka Fat. Inferential Patterns of Generalized Quantifiers and their Applications to Scalar Reasoning [ D ]. Ph.D. disser- tation, Hong Kong. Hong Kong Polytechnic University, 2012.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部