期刊文献+

Distress Characteristics in Embankment‑Bridge Transition Section of the Qinghai‑Tibet Railway in Permafrost Regions

原文传递
导出
摘要 The Qinghai-Tibet Railway has been operating safely for 16 years in the permafrost zone and the railroad subgrade is generally stable by adopting the cooling roadbed techniques.However,settlement caused by the degradation of subgrade permafrost in the embankment-bridge transition sections(EBTS)is one of the most representative and severe distresses.A feld survey on 440 bridges(including 880 EBTSs)was carried out employing terrestrial laser scanning and ground-penetrating radar for comprehensively assessing all EBTSs in the permafrost zone.The results show that the types of distresses of EBTSs were diferential settlement,upheaval mounds of the protection-cone slopes,subsidence of the protection-cone slopes,surface cracks of the protection cones and longitudinal and transverse dislocation of the wing walls.The occurrence rates of these distresses were 78.93,3.47,11.56,3.36,21.18 and 4.56%,respectively.The most serious problem was diferential settlement,and the average diferential settlement amount(ADSA)was 15.3 cm.Furthermore,the relationships between diferential settlement and 11 infuencing factors were examined.The results indicate that ADSA is greater on the northern side of a bridge than on the southern side and on the sunny slope than on the shady slope.It is also greater in the high-temperature permafrost region than in the low-temperature permafrost region and in the high-ice content area than in the low-ice content area.The EBTSs are more infuenced by ice content than by ground temperature.The ADSA increases when the embankment height increases,the particle size of subgrade soil decreases and the surface vegetation cover decreases.
出处 《International Journal of Disaster Risk Science》 SCIE CSCD 2023年第4期680-696,共17页 国际灾害风险科学学报(英文版)
基金 supported by the Second Tibetan Plateau Scientifc Expedition and Research Program(STEP)(Grant No.2019QZKK0905) the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA19070504) the Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology(2021B1212040003).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部