期刊文献+

Extraction of Fetal Electrocardiogram by Combining Deep Learning and SVD-ICA-NMF Methods 被引量:1

原文传递
导出
摘要 This paper deals with detecting fetal electrocardiogram FECG signals from single-channel abdominal lead.It is based on the Convolutional Neural Network(CNN)combined with advanced mathematical methods,such as Independent Component Analysis(ICA),Singular Value Decomposition(SVD),and a dimension-reduction technique like Nonnegative Matrix Factorization(NMF).Due to the highly disproportionate frequency of the fetus’s heart rate compared to the mother’s,the time-scale representation clearly distinguishes the fetal electrical activity in terms of energy.Furthermore,we can disentangle the various components of fetal ECG,which serve as inputs to the CNN model to optimize the actual FECG signal,denoted by FECGr,which is recovered using the SVD-ICA process.The findings demonstrate the efficiency of this innovative approach,which may be deployed in real-time.
出处 《Big Data Mining and Analytics》 EI CSCD 2023年第3期301-310,共10页 大数据挖掘与分析(英文)
  • 相关文献

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部