期刊文献+

Cloud-Based Intrusion Detection Approach Using Machine Learning Techniques 被引量:2

原文传递
导出
摘要 Cloud computing(CC)is a novel technology that has made it easier to access network and computer resources on demand such as storage and data management services.In addition,it aims to strengthen systems and make them useful.Regardless of these advantages,cloud providers suffer from many security limits.Particularly,the security of resources and services represents a real challenge for cloud technologies.For this reason,a set of solutions have been implemented to improve cloud security by monitoring resources,services,and networks,then detect attacks.Actually,intrusion detection system(IDS)is an enhanced mechanism used to control traffic within networks and detect abnormal activities.This paper presents a cloud-based intrusion detection model based on random forest(RF)and feature engineering.Specifically,the RF classifier is obtained and integrated to enhance accuracy(ACC)of the proposed detection model.The proposed model approach has been evaluated and validated on two datasets and gives 98.3%ACC and 99.99%ACC using Bot-IoT and NSL-KDD datasets,respectively.Consequently,the obtained results present good performances in terms of ACC,precision,and recall when compared to the recent related works.
出处 《Big Data Mining and Analytics》 EI CSCD 2023年第3期311-320,共10页 大数据挖掘与分析(英文)
  • 相关文献

同被引文献2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部