期刊文献+

基于卷积神经网络与长短期记忆神经网络的弹丸轨迹预测 被引量:4

Projectile Trajectory Prediction Based on CNN-LSTM Model
下载PDF
导出
摘要 针对弹丸非线性轨迹预测问题,提出一种基于卷积神经网络(CNN)与长短期记忆(LSTM)神经网络的混合轨迹预测模型。通过建立6自由度弹丸运动模型,并使用4阶龙格库塔法外弹道仿真,得到大量轨迹数据样本;提出CNN-LSTM神经网络的混合轨迹预测模型,并利用滑动窗口法和差分法构造输入输出的轨迹数据对,将预测问题转化为有监督的学习问题;将所提模型与LSTM神经网络模型、门控循环单元(GRU)神经网络模型和反向传播(BP)神经网络模型在同一数据集下进行仿真实验。研究结果表明,CNN-LSTM神经网络模型预测3 s后的平均累积预测误差在x轴方向约为14.83 m,y轴方向约为20.77 m,z轴方向约为0.75 m,且轨迹预测精度优于单一模型,为弹丸轨迹预测研究提供了一定的参考。 To solve the problem of nonlinear trajectory prediction of projectile,a novel hybrid trajectory prediction model based on convolutional neural network(CNN)and long and short-term memory(LSTM)neural network is proposed.A 6DOF projectile movement model is established,and a substantial dataset of trajectory samples is obtained through exterior ballistics simulations employing the four-order Runge-Kutta method.Secondly,the hybrid CNN-LSTM trajectory prediction model is proposed,and the input and output trajectory data pairs are constructed by using the sliding window method and first-order difference method,which transforms the prediction problem into a supervised learning problem.Then,the proposed model is compared with LSTM neural network model,gated recurrent unit(GRU)neural network model and back propagation(BP)neural network model using the same dataset.The results show that the average cumulative prediction error of CNN-LSTM model after 3 s is about 14.83 m in the x-axis direction,20.77 m in the y-axis direction and 0.75 m in the z-axis direction.The trajectory prediction accuracy of CNN-LSTM neural network model is better than that of a single model,which provides valuable insights for advancing projectile trajectory prediction research.
作者 郑志伟 管雪元 傅健 马训穷 尹上 ZHENG Zhiwei;GUAN Xueyuan;FU Jian;MA Xunqiong;YIN Shang(National Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing 210094,Jiangsu,China;School of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210094,Jiangsu,China;Shanghai Aerospace Electronic Technology Institute,Shanghai 201108,China)
出处 《兵工学报》 EI CAS CSCD 北大核心 2023年第10期2975-2983,共9页 Acta Armamentarii
基金 国家自然科学基金项目(61603191、61603189)。
关键词 弹道模型 深度学习 监督学习 卷积神经网络与长短期记忆神经网络模型 轨迹预测 ballistic model deep learning supervised learning CNN-LSTM neural network model trajectory prediction
  • 相关文献

参考文献9

二级参考文献67

  • 1朱丽梅,梁彦,张绪春.基于GPS外弹道测量方法的研究[J].上海航天,2004,21(3):11-14. 被引量:4
  • 2张健,姚俊,王欣,马彪.基于弹道参数灵敏度函数一种阻力系数辩识方法[J].弹箭与制导学报,2005,25(1):47-49. 被引量:2
  • 3COSTELLO M,PETERSON A.Linear theory of a dual-spin projectile in atmospheric flight[J].Journal of Gui-dance,Control,and Dynamics,2000,23:789-797.
  • 4BURCHETT B,COSTELLO M.Specialized Kalman Filtering for Guided Projectiles[R].AIAA2001-1120,2001.
  • 5HAINZ L,COSTELLO M.In Flight Projectile Impact Point Prediction[R].AIAA2004-4711,2004.
  • 6COOPER G,COSTELLO M.Flight dynamic response of spinning projectiles to lateral impulsive loads[J].Journal of Dynamic Systems,Measurement,and Control,2004,126(3):605-613.
  • 7OLLERENSHAW D,COSTELLO M.Model Predictive Control of a Direct Fire Projectile Equipped with Canards[R].AIAA2005-5818,2005.
  • 8华恭,欧林尔.弹丸作用和设计理论[M].北京:国防工业出版社,1975,156-185.
  • 9吴子明.平截正圆锥法--计算弹丸结构特征数方法[J].兵工学报:弹箭分册,1984(4):53-62.
  • 10Ollerenshaw D, Costello M. Simplified projectile swerve solution for general control inputs[ J]. Journal of Guidance Control & Dy-namics, 2012, 31 (5) : 1259 - 1265.

共引文献122

同被引文献33

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部