期刊文献+

基于Fluent烧结钕铁硼真空烧结炉气淬冷却温度场流场的模拟

Simulation of gas quenching cooling temperature field and flow field of sintered NdFeB vacuum sintering furnace based on Fluent
原文传递
导出
摘要 以SRVS-50G真空烧结炉为研究对象,基于Fluent有限元分析软件对烧结钕铁硼真空烧结炉气淬冷却过程温度场流场进行模拟分析。研究了冷却进风口风速和出风口数量对真空烧结炉冷却均匀性和冷却效率的影响,结果表明:提高进口风速可以提高冷却效率,但冷却均匀性降低,应该根据具体的产品温度均匀性要求选择适当的的进口风速,在出风口数量上,出风口数量为4,在冷却均匀性和冷却效率上都最佳。 Taking the SRVS-5oG vacuum sintering furnace as the research object,based on the Fluent finite element analysis software,the temperature field and flow field of the sintered NdFeB vacuum sintering furnace were simulated and analyzed during the gas quenching and cooling process.Effects of cooling inlet wind speed and outlet quantity on the cooling uniformity and cooling efficiency of vacuum sintering furnace were studied.The results show that increasing the inlet air speed can improve cooling efficiency,but the cooling uniformity is reduced.The appropriate inlet wind speed should be selected according to the specific product temperature uniformity requirements.In terms of the number of air outlets,the number of air outlets is 4,which is the best in terms of cooling uniformity and coolingefficiency.
作者 杨松 李军 刘迪 贺笃鹏 毕新雨 郜天涛 YANG Song;LI Jun;LIU Di;HE DUpeng;BE Xinyu;GAO Tiantao(Advanced Technology and Materials Co.,Ltd.,Beijing 100081,China;Material Digital Research and Development Center,China Iron and Steel Research Institute Group,Beijing 100081,China)
出处 《金属功能材料》 CAS 2023年第5期113-117,共5页 Metallic Functional Materials
关键词 FLUENT 钕铁硼 真空烧结炉 温度场 流场 冷却均匀性 冷却效率 Fluent NdFeB vacuum sintering furnace temperature field flow field cooling uniformity cooling efficiency
  • 相关文献

参考文献7

二级参考文献67

  • 1谭春林,白书欣,张虹,高艳丽,张家春,蔡珣.回火处理对烧结钕铁硼永磁材料组织和磁性能的影响[J].中国有色金属学报,2002,12(z1):64-66. 被引量:17
  • 2张善庆,王广生.真空正压气淬现状和发展趋势[J].国外金属热处理,2005,26(4):7-10. 被引量:6
  • 3罗筠,康进武,柳百成,融亦鸣.工件气体淬火过程数值模拟[J].热加工工艺,2007,36(4):63-67. 被引量:5
  • 4张静华,张志亚,李英敖.DD8单晶镍基高温合金热处理制度研究[J].材料开发与应用,1997,12(1):27-33. 被引量:8
  • 5Elkatatny I, Morsi Y, Blicblau A S, et. al. Numerical analysis and experimental validation of high pressure gas quenching [ J ]. International Journal of Themml Sciences, 2003, 42 (4) : 417- 423.
  • 6Strnat K J. Cobalt-rare-earth alloys as promising new permanent-magnetic materials [J]. Cobalt, 1967, 36: 133- 143.
  • 7Stmat K J, Hoffer G, Olsen J C, et al. A family of new cobalt-base permanent magnet materials [J]. J Appl Phys, 1967, 38(3): 1001-1002.
  • 8Buschow K H J, Luiten W, Naastepa P A, et al. Magnet material with a (BH)mx of 18.5 million Gauss Oersteds [J]. Philips Tech Rev, 1968, 29(11):336.
  • 9Ojima T, Tomisawa S, Yoneyama T, et al. New type rareearth cobalt magnets with an energy product of 30MGOe [J]. Japan J Appl Phys, 1977,16:671.
  • 10Sagawa M, Fujimura S, Togawa M, et al. New material for permanent-magnets on a base of Nd and Fe [J]. J Appl Phys,1984, 55(6):2083-2087.

共引文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部