摘要
文中基于人工神经网络(ArtificialNeuralNetwork,ANN)改进了SnortIDS。通过人工神经网络工具训练样本集,将训练成功的ANN集成到Snort的预处理器中,优化了Snort攻击检测。经实验验证,改进后的SnortIDS能检测到规则库以外的攻击行为,有效检测多种入侵行为。
In this paper,Snort IDS is improved based on artificial neural networks(ANN).The successfully trained ANN is integrated into the Snort preprocessor through the training sample set of artificial neural networks tools,and the Snort attack detection is optimized.Experiments have verified that the improved Snort IDS can detect attack behaviors outside the rule base and effectively detect various intrusion behaviors.
作者
侯忠响
HOU Zhongxiang(Suixi Vocational and Technical School,Huaibei,Anhui 235000,China)
出处
《移动信息》
2023年第10期144-145,157,共3页
MOBILE INFORMATION
关键词
入侵检测
人工智能技术
神经网络
Intrusion detection
Artificial intelligence technology
Neural network