期刊文献+

非平衡情感数据背景下基于边界度的过采样方法

An Oversampling Method Based on Boundary Degree in the Background of Unbalanced Affective Data
下载PDF
导出
摘要 针对情感分类研究中广泛存在的数据不平衡问题,提出了一种基于边界度的过采样方法(BD-SMOTE)。首先,根据少数类样本的多数类最近邻和少数类最近邻确定其边界度;其次,根据边界度计算少数类样本的采样权重;最后,根据采样权重自适应确定每一个少数类样本需要生成新样本的数量。实验结果表明,将该算法应用于不平衡情感数据集并结合SVM分类器训练分类模型,实现了准确分类。 In view of the widespread data imbalance in the study of emotion classification,a BD-SMOTE oversampling method based on boundary degree is put forward.Firstly,the boundary degree is determined according to the majority nearest neighbor and minority nearest neighbor of minority sample.Secondly,the sampling weights of a few samples are calculated according to the boundary degree.Finally,the number of new samples needed to be generated for each minority sample is determined adaptively according to sampling weight.The experimental results show that the algorithm is applied to the unbalanced emotion data set and combined with SVM classifier to train the classification model,which can achieve accurate classification.
作者 郑森 齐晓轩 柳亿霖 ZHENG Sen;QI Xiao-xuan;LIU Yi-lin(School of Mechanical Engineering,Shenyang University,Shenyang 110000,China;School of Applied Technology,Shenyang University,Shenyang 110000,China)
出处 《价值工程》 2023年第31期129-131,共3页 Value Engineering
基金 辽宁省教育厅基础科研项目(LJKMZ20221824) 辽宁省研究生教育教学改革研究项目(20220485) 沈阳大学研究生教育教学改革一般项目(2021065)。
关键词 情感分类 不平衡数据集 边界度 权重 过采样 emotion classification imbalanced data set boundary degree weight oversampling
  • 相关文献

参考文献7

二级参考文献92

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部