摘要
为了改善船舶航行图像质量,准确分辨图像信息,提出基于视觉传达的船舶航行图像优化方法。利用双边滤波器与冲击滤波器处理模糊船舶航行图像,达到图像去噪、纹理平滑以及边缘特征增强的目的。根据模糊核的稀疏性特点,通过正则化交替迭代方式实现模糊最佳估计结果的确定后,基于梯度稀疏的反卷积方法实现模糊图像的复原,运用HSV色彩模型对复原后的船舶航行图像作优化处理,获得高质量船舶航行图像。实验结果表明,该方法可实现模糊船舶航行图像视觉传达优化,优化后图像的结构相似度、信息熵指标最高可达0.967、9.49,边缘强度、梯度均值、彩色熵指标达到设定要求,图像视觉优化效果突出。
In order to improve the quality of ship navigation images and accurately distinguish image information,a fuzzy ship navigation image optimization method based on visual communication is proposed.Using bilateral filters and impulse filters to process fuzzy ship navigation images,the goal of image denoising,texture smoothing,and edge feature enhancement is achieved.Based on the sparsity of the fuzzy kernel,the fuzzy optimal estimation result is determined through regularization alternating iteration,and the gradient sparse deconvolution method is used to restore the fuzzy image.The HSV color model is used to optimize the restored ship navigation image,Obtain high-quality ship navigation images.The experimental results show that this method can achieve visual communication optimization of fuzzy ship navigation images.After optimization,the structural similarity and information entropy indicators of the images can reach up to 0.967 and 9.49,and the edge strength,gradient mean,and color entropy indicators meet the set requirements.The visual optimization effect of the images is outstanding.
作者
张璐
ZHANG Lu(Changchun Guanghua University,Changchun 130033,China)
出处
《舰船科学技术》
北大核心
2023年第19期177-180,共4页
Ship Science and Technology
关键词
视觉传达
模糊不清
船舶航行图像
双边滤波器
冲击滤波器
正则化
visual communication
blurred and unclear
ship navigation images
bilateral filter
impulse filter
regularization