摘要
针对多约束条件下多UUV任务分配问题,提出一种基于改进集合粒子群优化算法的分配方法,该方法首先定义包含UUV与保障船有效通信距离等指标的约束条件,建立以任务总执行时间最短为主要优化对象的目标函数,采用自适应惯性系数提高最优解邻域内的搜索能力,通过结合遗传算法的变异操作提高全局搜索能力,有效降低陷入局部最优解的概率。UUV任务分配仿真实验表明,本文提出的多约束多目标任务分配方法能够获取多UUV的最优任务分配,具有实际应用的可行性。
In order to solve the multi-UUV task assignment problem under multi-constraint,modified S-PSO is pro-posed.The constraints of this method contain energy,power,and the index of UUV and guarantee ship.The main target of optimization objective function is the shortest tack total execution time.The adaptive inertia coefficient is used to improve the search ability of the optimal solution in the neighborhood.The global search ability is improved by the mutation opera-tion of genetic algorithm.This improvement can reduce the probability of falling into local optimal solution.Simulation ex-periments on multi-UUV task assignment show that the proposed multi-constraint multi-objective task allocation method can obtain the optimal task allocation of multi-UUV,and it is feasible for practical application.
作者
张向鹏
黄双
曹旭
吕云飞
ZHANG Xiang-peng;HUANG Shuang;CAO Xu;LYU Yun-fei(Wuhan Second Ship Design and Research Institute,Wuhan 430205,China)
出处
《舰船科学技术》
北大核心
2023年第20期111-115,共5页
Ship Science and Technology
基金
国防基础科研项目(JCKY2021206B086)。
关键词
水下无人航行器
任务分配
粒子群优化
群体智能
多目标优化
underwater unmanned vehicle
task assignment
particle swarm optimization
swarm intelligence
multi-objective optimization