摘要
考虑一阶线性差分方程p_(1)(z)f(z+1)+p_(0)(z)f(z)=0和p_(1)(z)f(z+1)+p_(0)(z)f(z)=F(z)亚纯解f(z)的唯一性问题,其中F(z),p_(1)(z)和p_(0)(z)为非零多项式。在f(z)与亚纯函数g(z)CM分担0、1、∞的假设下,给出了f(z)的具体形式。进一步,还研究了方程的两个解CM分担三个值的情形,得到了方程的精确形式和解的具体形式。
The uniqueness problem of the meromorphic solution f(z)to the first order linear difference equations p_(1)(z)f(z+1)+p_(0)(z)f(z)=0 and p_(1)(z)f(z+1)+p_(0)(z)f(z)=F(z)was considered,where,F(z),p_(1)(z)and p_(0)(z)are non-zero polynomials.The specific form of f(z)was provided,under the condition that shares 0,1,∞CM with any meromorphic function g(z).Furthermore,the case where the equation has two solutions sharing three values CM was investigated,leading to the exact form of the equation and the specific form of the solutions.
作者
吴丽镐
柴富杰
陈宝琴
WU Lihao;CHAI Fujie;CHEN Baoqin(Guangzhou City University of Technology,Guangzhou 510800,China;Guangdong University of Finance,Guangzhou 510521,China;Guangdong Ocean University,Zhanjiang 524088,China)
出处
《南昌大学学报(理科版)》
CAS
北大核心
2023年第5期416-420,425,共6页
Journal of Nanchang University(Natural Science)
基金
国家自然科学基金项目(12101138)
广东海洋大学科研启动经费资助项目(1312043)。
关键词
差分方程
亚纯函数
唯一性
difference equation
meromorphic function
uniqueness