摘要
通过研究某金矿的全尾砂基本性质,采用博乐飞RSR-SST型流变测试仪测定其膏体料浆的流变参数,获取流变曲线并分析其变化过程。利用BP神经网络原理,建立了以料浆质量浓度X_(1)、灰砂比X_(2)、容重X_(3)和扩展度X_(4)影响因素,屈服应力Y_(1)和塑性黏度Y_(2)两个流变参数的流变模型。结果表明:料浆质量浓度是影响流变特性的主要因素,料浆的扩展度次之,灰砂比和料浆容重影响最小;当质量浓度处于72%~74%时,灰砂比、料浆容重和扩展度对流变参数影响较小;全尾砂膏体流变参数随着料浆质量浓度、灰砂比呈线性增长;建立的流变函数模型在预测金矿充填料浆流变特性参数中的误差在可控范围、准确性高,可为管输沿程阻力计算、井下充填管网布置提供依据。
This article studies the basic properties of the tailings of a certain gold mine.The rheological parameters of the paste slurry were measured using the Bolefei RSR-SST rheological tester,to obtain the rheological curve and analyze its change process.Using the principle of BP neural network,A rheological model was established with slurry mass concentration X_(1),cement sand ratio X_(2),unit weight X_(3),and extensibility X_(4) as influencing factors,and yield stress Y_(1) and plastic viscosity Y_(2) as two rheological parameters.The results show that the mass concentration of the slurry is the main factor affecting the rheological properties,the expansion of slurry takes the second place,and the ratio of cement to sand and the volume weight of slurry have the least influence.When the mass concentration is between 72%and 74%,the influence of ash sand ratio,slurry bulk density,and expansion degree on rheological parameters is relatively small.The rheological parameters of the full tailings paste increase linearly with the mass concentration of the slurry and the lime sand ratio.The established rheological function model has a controllable error and high accuracy in predicting the rheological characteristics parameters of the gold mine filling slurry,which can provide a basis for calculating the resistance along the pipeline transportation and arranging the underground filling pipeline network.
作者
杨纪光
王辉
王增加
吴再海
盛宇航
荆晓东
YANG Jiguang;WANG Hui;WANG Zengjia;WU Zaihai;SHENG Yuhang;JING Xiaodong(Shandong Gold Mining Co.,Ltd.,Laizhou 261441,China;School of Civil and Resource Engineering,University of Science and Technology Beijing,Beijing 100083,China;Shandong Key Laboratory of Deep-sea and Deep-earth Metallic Mineral Intelligent Mining,Jinan 250101,China)
出处
《有色金属工程》
CAS
北大核心
2023年第11期117-125,共9页
Nonferrous Metals Engineering
基金
“十三五”国家重点研发计划项目(2018YFC0604602)
山东省重大科技创新工程项目(2019SDZY0504)。
关键词
膏体料浆
流变特性
神经网络
预测分析
medium fine total tailings
vertical sand bin
static and dynamic flocculation
subsidence rule