期刊文献+

基于LS-DCGAN的GCSE-DenseNet光伏组件缺陷识别方法

DEFECT IDENTIFICATION METHOD FOR GCSE-Densenet PHOTOVOLTAIC MODULE BASED ON LS-DCGAN
下载PDF
导出
摘要 针对光伏组件样本不均衡及缺陷识别精度低问题,提出一种基于LS-DCGAN的GCSE-DenseNet光伏组件缺陷识别方法。首先,针对光伏组件样本的不均衡问题,构建最小二乘深度卷积生成对抗网络(LS-DCGAN),进行样本数据增强,以扩充数据集。其次,在传统DenseNet网络基础上引入分组卷积和注意力机制,提出一种基于分组卷积和注意力机制的改进GCSE-DenseNet网络模型。改进模型仍采用密集连接机制,实现特征重用防止梯度消失;同时,采用分组卷积优化模型密集模块结构,以降低模型参数量;引入注意力机制加强有效特征、削弱无效特征,以增强模型特征学习能力。最后,对所提模型的有效性进行实验验证。实验表明,改进的GCSE-DenseNet网络模型能有效提高光伏组件缺陷识别精度。 Aiming at the problem of unbalanced of photovoltaic module samples and low defect identification accuracy,a defect identification method of GCSE-DenseNet photovoltaic modules based on LS-DCGAN is proposed.Firstly,aiming at the imbalance problem of PV module samples,a least squares deep convolutional generative adversarial network(LS-DCGAN)is constructed to enhance the sample data to expand the dataset.Secondly,an improved GCSE-DenseNet network model is proposed by introducing group convolution and attention mechanism on the basis of the traditional DenseNet network.The improved model still adopts the dense connection mechanism to realize feature reuse and prevent the gradient from disappearing.Simultaneously,group convolution is employed to optimize the dense module structure and reduce the number of model parameters.The attention mechanism is introduced to strengthen effective features and weaken invalid features to enhance model feature learning ability.Finally,the effectiveness of the proposed model is verified through experiments.Experimental results show that the improved GCSE-DenseNet network model can effectively improve the defect recognition accuracy of photovoltaic modules.
作者 王艳 申宗旺 赵洪山 李伟 Wang Yan;Shen Zongwang;Zhao Hongshan;Li Wei(School of Electrical and Electronic Engineering,North China Electric Power University,Baoding 071003,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2023年第10期165-172,共8页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(51807063) 中央高校基本科研业务费专项资金(2021MS065)。
关键词 光伏组件 深度学习 图像分类 数据增强 分组卷积 photovoltaic modules deep learning image classification data enhancement group convolution
  • 相关文献

参考文献5

二级参考文献75

共引文献189

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部