期刊文献+

基于模拟退火机制的自适应粘性粒子群算法 被引量:5

Adaptive stickiness particle swarm optimization algorithm based on simulated annealing mechanism
原文传递
导出
摘要 为了进一步提升粒子群算法在离散优化问题中的性能,针对粘性二进制粒子群算法缺乏全局搜索能力、容易陷入局部最优和收敛速度慢的缺点,提出一种新的自适应参数策略和粒子散度指标,并结合模拟退火机制改善该算法的寻优能力.为了检验算法性能,通过选取不同维数的背包问题算例库以及不同规模的UCI特征选择问题算例库进行仿真实验,并对实验数据进行统计分析.实验以及分析结果表明,所提算法在寻优精度、算法稳定性和收敛速度上均优于对比算法. In order to further improve the performance of particle swarm optimization in discrete optimization problems,aiming at the shortcomings of stickiness binary particle swarm optimization,such as lack of global search ability,easy to fall into local optimum and slow convergence speed,a new adaptive parameter strategy and a particle divergence index are proposed,which are combined with simulated annealing mechanism to improve the optimization ability of the algorithm.In order to test the performance of the algorithm,simulation experiments are carried out by selecting the knapsack problem case library with different dimensions and the UCI feature selection problem case library with different scales,and the experimental data are statistically analyzed.The experimental and analytical results show that the proposed algorithm is superior to the comparison algorithm in optimization accuracy,algorithm stability and convergence speed.
作者 孙一凡 张纪会 SUN Yi-fan;ZHANG Ji-hui(School of Automation,Qingdao University,Qingdao 266071,China;Shandong Key Laboratory of Industrial Control Technology,Qingdao 266071,China)
出处 《控制与决策》 EI CSCD 北大核心 2023年第10期2764-2772,共9页 Control and Decision
基金 国家自然科学基金项目(61673228,62072260) 青岛市科技计划项目(21-1-2-16-zhz)。
关键词 二进制粒子群算法 自适应策略 粒子散度 模拟退火 背包问题 特征选择 binary particle swarm optimization adaptive strategy particle divergence simulated annealing backpack problem feature selection
  • 相关文献

参考文献7

二级参考文献86

  • 1赵传信,季一木.粒子群优化算法在0/1背包问题的应用[J].微机发展,2005,15(10):23-25. 被引量:21
  • 2雷英杰,王宝树,路艳丽.基于直觉模糊逻辑的近似推理方法[J].控制与决策,2006,21(3):305-310. 被引量:65
  • 3张国富,蒋建国,夏娜,苏兆品.基于离散粒子群算法求解复杂联盟生成问题[J].电子学报,2007,35(2):323-327. 被引量:33
  • 4贺毅朝,刘坤起,张翠军,张巍.求解背包问题的贪心遗传算法及其应用[J].计算机工程与设计,2007,28(11):2655-2657. 被引量:44
  • 5Holland J H. Building blocks, cohort genetic algorithms, and hyperplane-defined functions. Evolutionary Computation, 2000, 8(4): 373- 391.
  • 6Wang L, Maciejewski A A, Siegel H J. A comparative study of five parallel genetic algorithms using the traveling salesman problern//Proceedings of the 1st Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing. Los Alamitos, CA. 1998. 345-349.
  • 7刘顺忠.统计理论与应用.武汉:华中科技大学出版社,2005.
  • 8Kennedy J , Eberhart R C. Particle swarm optimization [C]. Proc of the 1995 IEEE Int Conf on Neural Networks. Perth, 1995: 1942-1948.
  • 9Kennedy J. In search of the essential particle swarm [C]. Proc 2006 IEEE World Congress on Computational Intelligence. Vancouver, 2006: 1694-1701.
  • 10Banks A , Vincent J , Anyakoha C. A review of particle swarm optimization - Part I : Background and development[J]. Natural Computing, 2007, 6(4)Z 467- 484.

共引文献224

同被引文献63

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部