摘要
目的:探讨急性再生障碍性贫血患者输血不良反应的影响因素,构建预测模型,为临床实践提供最佳评估工具,以便及时准确制定防治措施。方法:选取2021年6月至2022年6月梧州市红十字会医院、梧州市工人医院、广西壮族自治区桂东人民医院3家医院388例急性再生障碍性贫血患者作为研究对象,按照7∶3比例随机分为建模人群(n=271)和验证人群(n=117),统计输血不良反应、人口学特征、凝血指标、血栓弹力图,采用Logistic回归方程分析输血不良反应的影响因素,构建输血不良反应发生风险列线图预测模型,绘制受试者工作特征(ROC)曲线分析模型区分度,校准曲线分析模型准确度,临床决策曲线(DCA)评价模型有效性。结果:(1)急性再生障碍性贫血患者输血不良反应发生率为9.02%(35/388);(2)Logistic回归方程显示,输血史、过敏史、血小板储存时间、纤维蛋白原(FIB)、活化部分凝血酶时间(APTT)、凝血酶原时间(PT)、凝血最终强度(MA)是急性再生障碍性贫血患者输血不良反应的影响因素(P<0.05);(3)根据Logistic回归结果建立急性再生障碍性贫血患者输血不良反应列线图预测模型,在建模人群和验证人群中曲线下面积(AUC)分别为0.914、0.914,与实际观察结果之间有很好相关性,且净获益率较好;(4)依据模型中位评分(4分)将建模人群和验证人群分为高危人群(≥4分)和低危人群(<4分),高危人群输血不良反应发生率(17.39%)高于低危人群(4.97%,P<0.05)。结论:基于输血史、过敏史、血小板储存时间、FIB、APTT、PT、MA构建的列线图模型可有效预测急性再生障碍性贫血患者输血不良反应发生风险,帮助医护人员实现风险预警前移,采取个体化精准干预。
Objective:To investigate the factors influencing adverse reactions to blood transfusion in patients with acute aplastic anemia and construct a prediction model to provide the best assessment tool for clinical practice and to formulate timely and accurate prevention and treatment measures.Methods:A total of 388 patients with acute aplastic anemia in Wuzhou Red Cross Hospital,Wuzhou Worker s Hospital and Guidong People’s Hospital of Guangxi Zhuang Autonomous Region from June 2021 to June 2022 were selected as study subjects,randomly divided into modeling population(n=271)and validation population(n=117)according to the ratio of 7∶3.Transfusion adverse reactions,demographic characteristics,coagulation indexes,thromboelastography were collected.Logistic regression equation was used to analyze the factors influencing transfusion adverse reactions.We constructed a prediction model for the risk of transfusion adverse reactions by column line graphs,receiver operating characteristic(ROC)curve was used to analyze model discrimination,calibration curves was used to analyze model accuracy,and decision curve analysis(DCA)was used to evaluate model validity.Results:(1)The incidence of adverse transfusion reactions in patients with acute aplastic anemia was 9.02%(35/388);(2)Logistic regression equation showed that transfusion history,allergy history,platelet storage time,fibrinogen(FIB),activated partial thromboplastin time(APTT),(prothrombin time)PT,and maxium amplitude(MA)were factors affecting adverse transfusion reactions in patients with acute aplastic anemia(P<0.05).(3)Based on the Logistic regression equation,the area under the ROC curve(AUC)prediction model for adverse blood transfusion reactions in patients with acute aplastic anemia was established.The AUC values were 0.914 and 0.914 respectively in the modeling population and the verification population.There was a good correlation with the actual observation results,and the net benefit rate was good.(4)Based on the median score of the model(4 points),the patients in the modeling population and the validation population were classified into high-risk population(≥4 points)and low-risk population(<4 points),and the incidence of adverse blood transfusion reactions was higher in the high-risk population(17.39%)than in the low-risk population(4.97%,P<0.05).Conclusion:The neagram model based on blood transfusion history,allergy history,platelet storage time,FIB,APTT,PT and MA can effectively predict the risk of transfusion adverse reactions in patients with acute aplastic anemia,and help medical staff realize risk warning advance and take individualized and precise intervention.
作者
陆国健
吴文强
廖阳东
王晓刚
陆春兰
LU Guojian;WU Wenqiang;LIAO Yangdong;WANG Xiaogang;LU Chunlan(Department of Blood Transfusion,Wuzhou Red Cross Hospital,Wuzhou 5430002,China;Department of Hematology,Wuzhou Red Cross Hospital,Wuzhou 543002,China;Department of Blood Transfusion,Wuzhou Worker s Hospital,Wuzhou 543001,China;Department of Blood Transfusion,Guidong People’s Hospital of Guangxi Zhuang Autonomous Region,Wuzhou 543001,China)
出处
《东南大学学报(医学版)》
CAS
2023年第5期673-680,共8页
Journal of Southeast University(Medical Science Edition)
基金
广西壮族自治区卫生健康委员会自筹经费科研课题项目(Z20211358)。
关键词
急性再生障碍性贫血
输血
不良反应
影响因素
预测模型
acute aplastic anemia
blood transfusion
adverse reactions
influencing factors
predictive model