期刊文献+

基于系统聚类-神经网络的塑料饮料瓶差分拉曼光谱检验 被引量:1

Differential Raman Spectral Inspection of Plastic Drink Bottles Based on Hierarchical Clustering Analysis-Neural Networks
下载PDF
导出
摘要 建立塑料饮料瓶物证快速准确检验鉴别方法。利用差分拉曼光谱法检验42个塑料饮料瓶样品,优化积分时间并进行重现性检验。在40 s最优积分时间条件下采集光谱,任选41个样品作为建立模型的数据集,剩余样品作为盲样,对41个样品材质初步定性分为聚对苯二甲酸乙二醇酯(PET)和聚乙烯(PE)两类。建立基于系统聚类(HCA)、多层感知器神经网络和径向基神经网络的PET样品鉴别模型,确定最优鉴别模型及样品最佳分类。结果表明,系统聚类-多层感知器神经网络为最优鉴别模型,PET样品最佳分类为2类。差分拉曼光谱法结合系统聚类和神经网络可实现塑料饮料瓶有效鉴别。 The purpose of this study was to establish a rapid and accurate method for inspection and identification of physical evidence of plastic beverage bottles.Firstly,42 plastic drink bottle samples were tested by differential Raman spectroscopy to investigate the effects of different integration times on the spectra of the samples,and the reproducibility was tested.Secondly,under the optimal integration time of 40 s,spectra of samples were collected,and 41 samples were selected randomly as the model training set,and one sample was selected as the blind sample of the model prediction set.Qualitative analysis was made on the materials of 41 samples,which were preliminarily divided into two categories:polyethylene terephthalate(PET)and polyethylene(PE).Finally,sample identification models for PET based on hierarchical clustering analysis,multilayer perceptron neural network and radial basis function neural network was established to determine the optimal identification model and the optimal classification of samples.The results show that the identification model of hierarchical clustering analysis and multilayer perceptron neural network is the best model.The samples made of PET are best classified into 2 categories.Differential Raman spectroscopy combines with hierarchical clustering analysis and neural networks can effectively identify plastic beverage bottles.
作者 陈壮 姜红 倪婷婷 CHEN Zhuang;JIANG Hong;NI Tingting(Judicial Police Academy(Public Security Branch),Gansu University of Political Science and Law,Lanzhou 730070,China;Department of Criminal Investigation,Gansu Police Vocational College Lanzhou,Gansu 730046,China;Nanjing Jianzhi Instrument Equipment Co.,Ltd.,Nanjing 210049,China)
出处 《塑料工业》 CAS CSCD 北大核心 2023年第10期148-152,159,共6页 China Plastics Industry
基金 甘肃省教育厅:高校教师创新基金项目(2023A-100)。
关键词 差分拉曼光谱 系统聚类 神经网络 塑料饮料瓶 Differential Raman Spectroscopy Hierarchical Clustering Analysis Neural Networks Plastic Drink bottle
  • 相关文献

参考文献8

二级参考文献86

  • 1姜红.刑事案件现场上微量塑料的检验及应用[J].中国人民公安大学学报(自然科学版),2005,11(3):37-39. 被引量:12
  • 2李帮军.对样品实验比较测试与拉曼光谱分析[J].物理与工程,2005,15(6):41-43. 被引量:6
  • 3师振宇,黄山,方堃,霍剑青.拉曼光谱实验方法及谱分析方法的研究[J].物理与工程,2007,17(2):60-64. 被引量:20
  • 4姚燕,徐玉松,朱因存.对塑料添加剂及塑胶成品中的Pb的湿式消解方法的研究[J].塑料工业,2007,35(B06):281-282. 被引量:1
  • 5ADAR F, NOETHER H. Raman microprobe spectra of spin- oriented and drawn filaments of poly (ethylene terephthalate) [J]. Polymer, 1985, 26 (13): 1935-1943.
  • 6BULKIN B J, LEWIN M, MCKELVY M L. Crystallization kinetics of poly (ethylene terephthalate ) studied by rapid scanning Raman spectroscopy [ J]. Spectrochimica Acta Part A, 1985, 41 (1-2): 251-261.
  • 7ELLAHI S, HESTER R E, WILLIAMS K P J. Waveguide resonance Raman spectroscopy of degraded PVC [ J]. Spec- trochimica Acta Part A, 1995, 51 (4) : 549 -553.
  • 8BERG R W, OTERO A D. Analysis of adipate ester con- tents in poly (vinyl chloride) plastics by means of FT-Ra- man spectroscopy [ J ]. Vibrational Spectroscopy, 2006, 42 (2) : 222 - 225.
  • 9KIM M, NOH J, CHUNG H. Comparison of near-infrared and Raman spectroscopy for the determination of the density of polyethylene pellets [ J ]. Analytica Chimica Acta, 2009, 632 (1): 122-127.
  • 10KIM J, KIM Y, CHUNG H. Direct on-line Raman meas- urement of flying solid samples: Determination of polyethy- lene pellet density [ J]. Talanta, 2011, 83 (3) : 879- 884.

共引文献107

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部