期刊文献+

Manipulating nonlinear exciton polaritons in an atomically-thin semiconductor with artificial potential landscapes 被引量:2

原文传递
导出
摘要 Exciton polaritons in atomically thin transition-metal dichalcogenide microcavities provide a versatile platform for advancing optoelectronic devices and studying the interacting Bosonic physics at ambient conditions.Rationally engineering the favorable properties of polaritons is critically required for the rapidly growing research.Here,we demonstrate the manipulation of nonlinear polaritons with the lithographically defined potential landscapes in monolayer WS_(2)microcavities.The discretization of photoluminescence dispersions and spatially confined patterns indicate the deterministic on-site localization of polaritons by the artificial mesa cavities.Varying the trapping sizes,the polariton-reservoir interaction strength is enhanced by about six times through managing the polariton–exciton spatial overlap.Meanwhile,the coherence of trapped polaritons is significantly improved due to the spectral narrowing and tailored in a picosecond range.Therefore,our work not only offers a convenient approach to manipulating the nonlinearity and coherence of polaritons but also opens up possibilities for exploring many-body phenomena and developing novel polaritonic devices based on 2D materials.
出处 《Light(Science & Applications)》 SCIE EI CSCD 2023年第10期2163-2171,共9页 光(科学与应用)(英文版)
基金 National Natural Science Foundation of China(grant No.12020101003,and 12250710126) funding support from the State Key Laboratory of Low-Dimensional Quantum Physics of Tsinghua University and the Tsinghua University Initiative Scientific Research Program.
  • 相关文献

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部