期刊文献+

基于SVM-RFE和粒子群优化算法的恶意域名检测模型 被引量:1

A SVM-RFE and particle swarm optimization based detection model for malicious domain names
下载PDF
导出
摘要 本研究利用机器学习和随机搜索算法,提出一种基于SVM-RFE和粒子群优化算法的恶意域名检测模型.分析域名字符特征、解析特征和相关特征,使用SVM-RFE算法进行特征权重排序,通过优化的粒子群算法确定最佳SVM参数和特征选择.实验证明该检测模型具有较好的效率和准确度. This study proposes a domain name detection model based on the SVM-RFE algorithm and particle swarm optimization method using machine learning and stochastic search algorithms.The character characteristics,parsing features and relevant characteristics of the domain name are analyzed.The features aresorted by the SVM-RFE algorithm.The parameters and features of supportvectormachine are automatically determined by the particle swarm optimization algorithm.The experimental results show that the monitoring model has higher detection efficiency and better prediction accuracy.
作者 赵正利 姜鹏 仲国强 吴建新 ZHAO Zhengli;JIANG Peng;ZHONG Guoqiang;WU Jianxin(Department of Education,Ocean University of China,Qingdao,Shandong 266100,China;Network and Information Center,Ocean University of China,Qingdao,Shandong 266100,China;Faculty of Information Science and Engineering,Ocean University of China,Qingdao,Shandong 266100,China)
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2023年第5期634-638,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 中国高校产学研创新基金资助项目(2022IT151)。
关键词 网络安全 恶意域名 支持向量机 递归特征消除 粒子群算法 network security malicious domain name support vector machine recursive feature elimination particle swarm optimization algorithm
  • 相关文献

参考文献8

二级参考文献60

  • 1王垚,胡铭曾,李斌,闫伯儒.域名系统安全研究综述[J].通信学报,2007,28(9):91-103. 被引量:26
  • 2Porras P,Saidi H,Yegneswaran V, A foray into Conficker’s logic and rendezvous points. In: Lee W, ed. Proc. of the 2nd USENIX Conf. on Large-Scale Exploits and Emergent Threats: Botnets,Spyware, Worms, and More (LEET 2009). Boston: USENIX, 2009.
  • 3Conficker C Analysis. 2009. http://mtc.sri.com/Conficker/addendumC.
  • 4Royal P. Analysis of the Kraken Botnet. 2008. https://www.damballa.com/downloads/r_pubs/KrakenWhitepaper.pdf.
  • 5Stone-Gross B, Cova M,Cavallaro L. Your botnet is my botnet: analysis of a botnet takeover. In: Al-Shaer E, Jha S, Keromytis AD, eds. Proc. of the 16th ACM Conf. on Computer and Communications Security (CCS 2009). Chicago: ACM Press, 2009. 635-647. [doi: 10.1145/1653662.1653738].
  • 6Chatzis N, Popescu-Zeletin R. Flow level data mining of DNS query streams for email worm detection. In: Corchado E, Zunino R, Gastaldo P, Herrero A, eds. Proc. of the Int’l Workshop on Computational Intelligence in Security for Information Systems (CISIS2008). Berlin, Heidelberg: Springer-Verlag,2009. 186-194. [doi: 10.1007/978-3-540-88181-0—24].
  • 7Chatzis N, Popescu-Zeletin R. Detection of email worm-infected machines on the local name servers using time series analysis. Journal of Information Assurance and Security, 2009,4(3):292-300.
  • 8Chatzis N, Popescu-Zeletin R, Brownlee N. Email worm detection by wavelet analysis of DNS query streams. In: Dasgupta D, Zhan J, eds, Proc. of the IEEE Symp. on Computational Intelligence in Cyber Security (CICS 2009). Nashville: IEEE, 2009. 53-60. [doi: 10.1 丨 09/CICYBS.2009.4925090].
  • 9Chatzis N, Brownlee N. Similarity search over DNS query streams for email worm detection. In: A wan I,ed. Proc. of the 2009 Int,l Conf. on Advanced Information Networking and Applications (AINA 2009). Bradford: IEEE, 2009. 588-595. [doi: 10.1109/AINA. 2009.132].
  • 10Caglayan A, Toothaker M, Drapeau D, Burke D, Eaton G. Real-Time detection of fast flux service networks. In: Walter E, ed. Proc. of the 2009 Cybersecurity Applications & Technology Conf. for Homeland Security (CATCH 2009). Washington: IEEE, 2009.285-292. [doi: 10.1109/CATCH.2009.44].

共引文献64

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部