摘要
大多火电机组因阀门安装偏差、DEH改造、运行磨损、检修过程中重复解体等问题,使汽轮机高压调门的实际流量特性与配汽函数中参数存在一定偏差,造成机组负荷精度控制偏低、AGC考核指标Kp值下降、一次调频考核不合格、机组的协调能力不足等诸多问题。本文优化汽轮机高调门流量特性后,利用大数据分析历史数据,寻找各高调门的动作位置,契合合适的配汽参数,使每个高调门的重叠区能更好地衔接、分析异常现象,解决存在的共性问题,最后,通过实际案例的验证和对比分析,证明了基于数据挖掘的汽轮机阀门流量特性优化方法的有效性和可行性,为机组安全经济的运行提供了良好的保障。
Most thermal power units suffer from problems such as valve installation deviation,DEH modification,operation wear,and repeated disassembly during maintenance,resulting in a certain deviation between the actual flow characteristics of the high-pressure control valve of the steam turbine and the parameters in the steam distribution function.This leads to low load accuracy control of the unit,a decrease in the Kp value of the AGC assessment index,unqualified primary frequency regulation assessment,and insufficient coordination ability of the unit.After optimizing the flow characteristics of steam turbine high control valves,this paper uses big data analysis to analyze historical data,find the action positions of each high control valve,and match appropriate steam distribution parameters,so that the overlapping areas of each high control valve can better connect and analyze abnormal phenomena,and solve common problems.Finally,through practical case verification and comparative analysis,the effectiveness and feasibility of the data mining based optimization method for steam turbine valve flow characteristics have been proven,provide good guarantee for the safe and economical operation of the unit.
作者
岳妮
扈娟
于鹏程
YUE Ni;HU Juan;YU Pengcheng(Inner Mongolia Mengdong Energy Co.,Ltd.,Hulunbuir,Inner Mongolia 021000,China;Shandong Naxin ElectricPower Technology Co.,Ltd.,Jinan,Shandong 250101,China)
出处
《自动化应用》
2023年第20期91-93,共3页
Automation Application
关键词
流量特性
高调门
大数据
调门优化
配汽函数
flow characteristics
high profile door
big data
tuning optimization
steam distribution function