期刊文献+

基于深度学习的微博舆情监测模型研究与实现 被引量:2

Research and implementation of Weibo public opinion monitoring model based on deep learning
下载PDF
导出
摘要 为了实时监测和分析新浪微博上的舆论情况,建立一种基于深度学习的微博舆情监测模型。提出了基于Java的分布式数据爬取框架和基于Elasticsearch的分布式搜索存储方法,有效地提升了舆情监测模型的性能。提出了融合改进注意力机制的Bi-LSTM情感分析方法和基于情感分析的舆情预警等级计算方法,很好地实现了对微博热搜话题的实时舆情监测。 In order to monitor and analyze the public opinion situation on Sina Weibo in real-time,a Weibo public opinion monitoring model based on deep learning is established.It proposes a distributed data crawling framework based on Java and a distributed search storage method based on Elasticsearch,effectively improving the performance of the public opinion monitoring model.A Bi-LSTM sentiment analysis method that integrates improved attention mechanism and a public opinion warning level calculation method based on sentiment analysis are proposed,effectively achieving real-time public opinion monitoring of hot topics on Weibo.
作者 成哲丞 Cheng Zhecheng(Information Science and Engineering College,Zhejiang Sci-Tech University,Hangzhou,Zhejiang 310018,China)
出处 《计算机时代》 2023年第11期124-126,130,共4页 Computer Era
关键词 Java分布式爬虫 Elasticsearch 注意力机制 Bi-LSTM 舆情预警 Java distributed crawler Elasticsearch attention mechanism Bi-LSTM public opinion warning
  • 相关文献

参考文献4

二级参考文献23

共引文献22

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部