期刊文献+

基于双插补轨迹控制的七关节机械臂避障 被引量:1

Obstacle avoidance of a seven-joint manipulator based on double interpolationtrajectory control
下载PDF
导出
摘要 基于七关节机械臂的解析解,提出了一种新的机械臂轨迹控制算法,该算法基于双插补方法,其关键点在于利用机械臂腕部关节中心点的位置向量,通过推导这一向量在轨迹规划器TP中的插补运算方程,实现了机械臂运动轨迹的平滑规划.此外,该算法根据腕部中心点位置向量计算出第七关节的旋转角度,在每个插补周期内,算法计算得到的旋角值被添加到通过解析解计算出的逆解关节向量的第七关节角度值上,这实现了对机械臂关节轨迹的高精度控制.同时,通用的梯度投影法计算一组关节角度值作为解析解的备选解,实现了避免奇异点的影响的效果.这一方法的有效性在LinuxCNC实时控制平台和Matlab仿真平台上经过了充分实验验证,以机械臂的末端精度作为主要评估指标.研究结果表明,相较于传统的梯度投影法等算法,该算法在机械臂关节轨迹控制中具有显著的优势,特别是在提高末端精度和误差控制方面表现出明显优势.这一研究的成果为工业自动化领域提供了一种更可靠、高效的七关节机械臂轨迹控制方法,有望促进工业机械臂应用的进一步发展,为生产过程提供更高水平的精度和效率. Within the domain of robotic manipulations,an advanced analytical solution tailored for seven-joint robotic arms has been meticulously designed,thereby introducing a pioneering trajectory control algorithm specifically developed for such robotic arms.The basis of this innovative algorithm draws inspiration from the well-established bi-interpolation method.The pivotal component of this approach focuses on exploiting the precise position vector at the heart of the wrist joint of the robotic arm.By skillfully deriving the sophisticated interpolation computational equation based on this vector within the Trajectory Planner(TP),the algorithm ensures seamless and smooth planning of the movement trajectory of the robotic arm.Moreover,the algorithm demonstrates its adaptability by calculating the rotation angle of the pivotal seventh joint by interpreting data derived from the position vector of the wrist center point.During each meticulous interpolation cycle,the algorithm combines the calculated rotational value with the seventh joint angle value,obtained through a rigorous analytical inverse solution with high precision.This incorporation enables the system to achieve notable high-precision control over the joint trajectory of the robotic arm,thereby establishing new benchmarks in the field.Simultaneously,the globally recognized gradient projection method is used to compute an array of joint angle values.These values,functioning as robust alternative solutions to the analytical solution,play a pivotal role in effectively mitigating the challenging effects posed by singular points often encountered in robotic computations.To ensure its reliability and dominance,this method has undergone rigorous testing and validation phases in public platforms,namely,the LinuxCNC real-time control and Matlab simulation platforms.During these assessments,the end-point precision of the robotic arm was selected as the primary evaluation metric,ensuring that the results are firmly based on practical applications.The comprehensive research findings resulting from these rigorous tests unmistakably indicate that when compared to conventional methods,such as the gradient projection method,this innovative algorithm is superior,particularly in the field of robotic arm joint trajectory control.Its proficiency in enhancing end-point precision and reducing errors is particularly notable.Therefore,this groundbreaking research work offers an invaluable contribution to industrial automation by presenting a trajectory control methodology for seven-joint robotic arms,thereby assuring enhanced reliability and increased efficiency.By addressing current technological gaps,this work paves the way for further technological advancements in industrial robotic arm applications,promising a future with optimized precision and efficiency across diverse production processes.
作者 任金超 李佳昌 王平江 魏鹏 张小晗 REN Jinchao;LI Jiachang;WANG Pingjiang;WEI Peng;ZHANG Xiaohan(National Nc System Engineering Research Center,Huazhong University of Science and Technology,Wuhan 430074,China;Quanzhou HUST Research Institute of Intelligent Manufacturing,Quanzhou 362006,China)
出处 《工程科学学报》 EI CSCD 北大核心 2023年第12期2085-2094,共10页 Chinese Journal of Engineering
基金 泉州市科技计划资助项目(2020CT005)。
关键词 双插补 轨迹控制 避障 七关节机械臂 末端精度 double imputation trajectory control obstacle avoidance seven-joint robotic arm end precision
  • 相关文献

参考文献24

二级参考文献231

共引文献280

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部