期刊文献+

极性碘酸盐Zn(IO_(3))_(2)粉体的合成及光催化性能

Synthesis and Photocatalytic Property of Polar Iodate Zn(IO_(3))_(2)Powder
下载PDF
导出
摘要 以碘酸和乙酸锌作为起始原料,利用水热法制备了极性碘酸盐Zn(IO_(3))_(2)粉体;采用XRD、SEM等手段检测了Zn(IO_(3))_(2)的晶体结构和形貌;通过紫外可见漫反射光谱测试了Zn(IO_(3))_(2)粉体的光吸收性能;以罗丹明B为目标降解物,在紫外光照射下测试了Zn(IO_(3))_(2)粉体的光催化活性。研究结果表明:Zn(IO_(3))_(2)粉体的禁带宽度为4.48 eV,BET比表面积仅有1.27 m^(2)/g,但是其仍表现出优异的光催化活性,在紫外光照射6 min后约有97%的RhB被光降解,这主要是因为其内极化电场的存在为其光生载流子的分离提供了极大的助力。 Polar Zn(IO_(3))_(2)powder was prepared by hydrothermal method using HIO_(3)and Zn(C_(2)H_(3)O_(2))_(2)as starting materials.The crystal structure and morphology of Zn(IO_(3))_(2)powder was characterized by XRD and SEM.The light absorption properties of Zn(IO_(3))_(2)powder was measured by UV-vis diffuse reflectance spectroscopy.The photocatalytic activity of Zn(IO_(3))_(2)powder was measured under ultraviolet light with Rhodamine B as the target degradation material.The results show that the band gap of Zn(IO_(3))_(2)powder is 4.48 eV and the BET specific surface area is only 1.27 m^(2)/g.However,Zn(IO_(3))_(2)powder still shows excellent photocatalytic activity.After 6 min of UV irradiation,about 97%RhB is photodegraded.This is mainly because the existence of internal polarized electric field provides great power for the separation of photogenerated carriers.
作者 赵丽宏 周海静 赵文武 ZHAO Lihong;ZHOU Haijing;ZHAO Wenwu(Tangshan Integrated Law Enforcement Agency for Market Regulation,Tangshan 063000,China;Tangshan Product Quality Supervision and Test Institute,Tangshan 063000,China;School of New Materials and Chemical Engineering,Tangshan University,Tangshan 063000,China)
出处 《中国陶瓷》 CAS CSCD 北大核心 2023年第10期36-42,55,共8页 China Ceramics
基金 唐山市科技计划项目(21130235C)。
关键词 碘酸盐 水热法 光催化 Zn(IO_(3))_(2) 极化电场 光降解 Iodate Hydrothermal method Photocatalysis Zn(IO_(3))_(2) Polarized electric field Photodegradation
  • 相关文献

参考文献1

二级参考文献9

  • 1[1]FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 328(7):37-38.
  • 2[2]HOFFMAN M R, MARTIN ST, CHOIW, et al. Environmental applications of semiconductor photocatalysis[J].ChemRev, 1995, 95(1):69-96.
  • 3[3]LINSEBIGLER A L, LU G, YATES J T Jr. Photocatalysis on TiO2 surfaces: principle, mechanisms, and selected results [J]. Chem Rev, 1995, 95(3):735-758.
  • 4[4]TAKAMIK, SAGAWAT, UEHARA H, et al. Photocatalytic De-NOx-ing building materials[J]. Catalysts Catal,1999, 41(4):295.
  • 5[5]JONES A P, WATTS R J. Dry phases titanium dioxide-mediated photocatalysis: basis for in situ surface destruction of hazardous chemicals[J]. J Environ Eng, 1997, 10:974-980.
  • 6[9]BUTTERFIELD I M,CHRISTENSEN P A, CURTIS T P,et al. Water disinfection using an immobilised titanium dioxide film in a photochemical reactor with electric film enhancement[J]. Water Res, 1997,31(3):675.
  • 7[10]BARTON R Jr. Refinement of the crystal structure of buergerite and the absolute orientation of tourmalines[J].Acta Crystallographica, 1969, B25:1524-1533.
  • 8[11]NAKAMURA T, KUBO T. The tourmaline group crystals reaction with water[J]. J Ferroelectrics, 1992, 137:13-31.
  • 9[14]KAKAMU Y, SANO H. Tourmaline composite grains and apparatus using them[P]. US Patent, 6034013. 2000-03-07.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部