摘要
神经形态计算能够有效处理数密集型任务.本文提出一种基于二维MoS2突触和CMOS神经元混合集成的神经形态硬件系统,可兼具二维突触器件的灵活可塑性与CMOS神经元的成熟度、可靠性.受益于混合集成,进一步提出特征提取和频率编码方式,降低了硬件所需的突触与神经元数量;基于板级全硬件实现高准确率(98.8%)和低功耗(11.4μW)的字符识别功能.本工作为构建高面积效率和能量效率的神经形态硬件系统提供了一个可行的方案.
Neuromorphic computing enables efficient processing of data-intensive tasks,but requires numerous artificial synapses and neurons for certain functions,which leads to bulky systems and energy challenges.Achieving functionality with fewer synapses and neurons will facilitate integration density and computility.Two-dimensional(2D)materials exhibit potential for artificial synapses,including diverse biomimetic plasticity and efficient computing.Considering the complexity of neuron circuits and the maturity of complementary metal-oxide-semiconductor(CMOS),hybrid integration is attractive.Here,we demonstrate a hybrid neuromorphic hardware with 2D MoS_(2)synaptic arrays and CMOS neural circuitry integrated on board.With the joint benefit of hybrid integration,frequency coding and feature extraction,a total cost of twelve MoS2 synapses,three CMOS neurons,combined with digital/analogue converter enables alphabetic and numeric recognition.MoS_(2)synapses exhibit progressively tunable weight plasticity,CMOS neurons integrate and fire frequency-encoded spikes to display the target characters.The synapse-and neuron-saving hybrid hardware exhibits a competitive accuracy of 98.8%and single recognition energy consumption of 11.4μW.This work provides a viable solution for building neuromorphic hardware with high compactness and computility.
作者
薛思惟
王水源
吴天祥
邸紫烨
许诺
孙一博
曾超凡
马顺利
周鹏
Siwei Xue;Shuiyuan Wang;Tianxiang Wu;Ziye Di;Nuo Xu;Yibo Sun;Chaofan Zeng;Shunli Ma;Peng Zhou(Shanghai Key Laboratory for Future Computing Hardware and System,School of Microelectronics,Fudan University,Shanghai 200433,China;State Key Laboratory of ASIC and System,School of Information Science and Technology,Fudan University,Shanghai 200433,China;Frontier Institute of Chip and System&Qizhi Institute,Fudan University,Shanghai 200433,China;Hubei Yangtze Memory Laboratories,Wuhan 430205,China)
基金
supported by the National Key Research and Development Program of China(2021YFA1200500)
the National Natural Science Foundation of China(61925402,62090032,62104039,and 62304042)
the Science and Technology Commission of Shanghai Municipality(19JC1416600)
China Postdoctoral Science Foundation(2022M720032)
Shanghai Post-Doctoral Excellence Program(2022091)
Sailing Program(23YF1402100)
the Natural Science Foundation of Shanghai(21ZR1405700)
the Shanghai Science and Technology Commission “Explorer Project”(22TS1401500)。